《数学排列组合常用方法与技巧精讲.ppt》由会员分享,可在线阅读,更多相关《数学排列组合常用方法与技巧精讲.ppt(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.2.组合的定义组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.3.排列数公式排列数公式:4.4.组合数公式组合数公式:1.1.排列的定义排列的定义:排列与组合的区别与联系排列与组合的区别与联系:与顺序有关的为排列问题与顺序有关的为排列问题,与顺序无关的为组合问题与顺序无关的为组合问题.1.插空法2.捆绑法3.插拨法(转化法/隔板法)4.剩余法5.对等法6.排除法7.倍缩法8.枚举法等例例1 1 学校组织老师学生一起看电影,同一排电影票12
2、张。8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?解解 先排学生共有 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有 种选法.根据乘法原理,共有的不同坐法为 种.结论结论1 1 插空法插空法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可.分析分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.例2 5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?解
3、因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有 种排法,其中女生内部也有 种排法,根据乘法原理,共有 种不同的排法.结论2 捆绑法捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.例3 在高二年级中的8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?解 此题可以转化为:将12个相同的白球分成8份,
4、有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有 种不同的放法,所以名额分配方案有 种.结论3 转化法(插拔法)转化法(插拔法):对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解.分析 此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.例4 袋中有不同的5分硬币23个,不同的1角硬币10个,如果从袋中取出2元钱,有多少种取法?解 把所有的硬币全部取出来,将得到 0.0523+0.1010=2.15元,
5、所以比2元多0.15元,所以剩下0.15元即剩下3个5分或1个5分与1个1角,所以共有 种取法.结论4 剩余法剩余法:在组合问题中,有多少取法,就有多少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法.分析 此题是一个组合问题,若是直接考虑取钱的问题的话,情况比较多,也显得比较凌乱,难以理出头绪来.但是如果根据组合数性质考虑剩余问题的话,就会很容易解决问题.例5 期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?解 不加任何限制条件,整个排法有 种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的,所以语文安排在数学之前考的排法共有 种.结论5
6、对等法对等法:在有些题目中,它的限制条件的肯定与否定是对等的,各占全体的二分之一.在求解中只要求出全体,就可以得到所求.分析 对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因此要求其中的某一种情况,能够得到全体,那么问题就可以解决了.并且也避免了问题的复杂性.例6 某班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?解 43人中任抽5人的方法有 种,正副班长,团支部书记都不在内的抽法有 种,所以正副班长,团支部书记至少有1人在内的抽法有 种.结论6 排除法排除法:有些问题,正面直接考虑比较
7、复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中排除.分析 此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常的简便.这样就可以简化计算过程.定序问题倍缩空位插入策略定序问题倍缩空位插入策略例例7 7.7.7人排队人排队,其中甲乙丙其中甲乙丙3 3人顺序一定共有多人顺序一定共有多 少不同的排法少不同的排法解:(倍缩法倍缩法)对于某几个元素顺序一定的排列对于某几个元素顺序一定的排列问题问题,可先把这几个元素与其他元素一起可先把这几个元素与其他元素一起进行排列进行排列,然后用总排列数除以然后用总排列数除以这几个元这几个元素之间的全排列数素之间的全排列数,则共有不同排法种数则共有不同排法种数是:是:(空位法空位法)设想有)设想有7 7把椅子让除甲乙丙以外把椅子让除甲乙丙以外的四人就坐共有的四人就坐共有 种方法,其余的三个种方法,其余的三个位置甲乙丙共有位置甲乙丙共有 种坐法,则共有种坐法,则共有 种种 方法。方法。1思考思考:可以先让甲乙丙就坐吗可以先让甲乙丙就坐吗?回目录回目录
限制150内