八省八校2023届高三第一次学业质量评价(T8联考)数学试卷含答案.pdf
《八省八校2023届高三第一次学业质量评价(T8联考)数学试卷含答案.pdf》由会员分享,可在线阅读,更多相关《八省八校2023届高三第一次学业质量评价(T8联考)数学试卷含答案.pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、广东实验中学东北育才中学石家庄二中华中师大一附中八校西南大学附中南京师大附中湖南师大附中福州一中2023届高三第一次学业质量评价T8联考)数学试题考试时间:2022年12月16日上午8:00-10:00 试卷满分150分 考试用时120分钟注意事项:l.答卷前考生务必将向己的姓名、准考证号填写在答题卡上。2.问答选择题时,选出每小题答案后用铅笔把答题卡对应题目的答案标号涂黑。虫n需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡仁。写在本试卷上无效。3.考试结束后将木试卷和答题卡一并交回。一、选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项
2、是符合题目要求的1复数z满足1+zi+zi2=I 1-./3i I,则 z=人l+i1 1.B一十一1.2 2 c.i一一一一2 2 l2 12D2.若集合M=.rl 24.N=.r I log3.r1,贝IJMUN=A.:rl2.r!:三3C.:r!O.:r2B.rJ.rOD.R3.已知S,是数歹I,的前II项和.贝la.,。”是.S,是递增数列”的A.充分不必要条件B.必要不充分条件c.充要条件D.既不充分也不必要条件4.某同学掷假子5次,分别记录每次假子山现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是.中位数是3.众数是2c.方差是2.4.平均数是2B.平均数是3.11位数
3、是2D.平均数是3,众数是2数学试题第1页共6页数学试题参考答案第页共页 届高三第一次学业质量评价(T 联考)数学试题参考答案及多维细目表题号 答案C B A C B D C DA B D A C A B DA C D【答案】C【解析】由zi zi i可得(i)z,zi i,故选C【答案】B【解析】Mx|x,Nx|x,故MNx x,故选B【答案】A【解析】若an,则SnSn,Sn是递增数列,“an”是“Sn是递增数列”的充分条件;若Sn是递增数列,则SnSn,an(n),但 是a的 符 号 不 确 定,“an”不 是“Sn是递增数列”的必要条件,故选A【答案】C【解析】选项A:有可能出现点数,
4、例如,;选项B:有可能出现点数,例如,;选项C:不 可 能 出 现 点 数,(),如果出现点数,则方差大于或等于,不可能是;选项D:有可能出现点数,例如,故选C【答案】B【解析】s i n()c o ss i nc o ss i n(),s i n()s i n()c o s()s i n(),故选B【答案】D【解析】设圆台的上底面半径为r,下底面半径R,母线长为l,球的半径为R,球与圆台的两个底面和侧面均相切,lrR,R,圆 台 的 侧 面 积 与 球 的 表 面 积 之 比 为S侧S表(rR)l R(),故选D【答案】C【解析】g(x)为偶函数,g(x)g(x),即fx()xfx()x,两
5、边同时对x求导得f x()f x(),即f(x)f(x),令x,则f(),f(x)为奇函数,f(x)f(x),又f(x)f(x),即f(x)f(x),联立f(x)f(x)得f(x)f(x),即f(x)f(x),f()f()f(),故选C【答案】D【解析】依题意,设P(x,y),Q(x,y),B(x,y),A(x,),直线P Q、Q B Q A()、B P的斜率分别为k,k,k,则k y()x x()yxk,kk,kk,xayb,xayb,两 式 相 减 得xxayyb,(yy)(xx)(yy)(xx)ba,即kkba,ba,ba,ecaba,椭圆的离心率e,故选D【答案】A B D【解 析】连
6、 接AC,AD,则NP是ACD的 中 位 线,NPD C,故选项A正确;连 接BD,BA,则MNAD,MN平面A C D,即MN平面A C P,故选项B正确;连接BD,BA,AD,则平面MNP即为平面BAD,显然DC不垂直平面BAD,故选项C错误;PMB D,D B C即为PM与B C所成的角,D B C ,故选项D正确故选A B D【答案】A C【解析】方法一:将f(x)s i n(x)的图像向数学试题参考答案第页共页左 平 移个 单 位 得 到g(x)s i n(x)s i n(x)的图像,g(x)的图像与f(x)的图像关于y轴对称,g()f(),即c o ss i n,经检验,满足题意,
7、故选项A正确,选项B不正确;设f(x)的周期为T,g(x)的图像是f(x)的图像向左平移T个得到,g(x)的对称轴过f(x)的对称中心,故选项C正确;当m,时,f(m)的 值 域 为,当n,时,g(n)的值域为,故选项D不正确故选A C 方法二:由题意可得g(x)s i n(x)s i n(x),g(x)的 图 像 与f(x)的 图 像 关 于y轴 对称,g(x)f(x),即s i n(x)s i n(x),xxk,kZ,解得k,kZ,故选项A正确,选项B不正确;f(x)s i n(x),令xk,kZ,得f(x)的对称中心为(k,),kZ,g(x)s i n(x),令xk,kZ,得g(x)的对
8、称轴为xk,kZ,g(x)的对称轴过f(x)的对称中心,故选项C正确;选项D的判断同上【答案】A B D【解 析】由n Snn()Snn()nn()n,nN()得SnnSnnnn,nN(),SS,SS,SnnSnnn,累加得SnnSn n(),解得Snn n n,nN(),当n时,S 满足上式,Snn n,当n时,anSnSnnn,a,故选项A正确;当n时,annn 单调递增,又aS,aSS,an 单调递增,且aaaaaa,当n时,Sn 单调递减,当n时,Sn 单调递增,且SS,当n时,Sn取得最小值,故选项B正确;又S ,S ,当Sn时,n的最小值为,故选项C错误;当n,时,Snan;当n,
9、时,Snan;当n时,Snan,当n,时,考虑Snan的最小值,又当n,时,an恒为正且单调递减,Sn恒为负且单调递增,Snan单调递增,当n时,Snan取得最小值,故选项D正确,故选A B D【答案】A C D【解析】由题意得f(x)exxs i nxex,设F(x)f(x)ex,则F(x)xs i nxex,易得当x 时,F(x),当x 时,F(x),函数F(x)在(,)上单调递减,在(,)上单调递增,F()F(),即f()ef()e,f()e,选项A正确;f()f()s i ne,f()f(),选项B错误;设h(x)f(x)f(x)xs i nxex,则h(x)(xs i nxex)c
10、o sxxs i nxex,数学试题参考答案第页共页设r(x)c o sxxs i nx,则当x时,r(x)(x)(s i nxc o sx)();当x 时,s i nxx,且 c o sx,r(x);当x时,r(x)s i nxc o sx s i n(x),当x(,)时,r(x),r(x)单调递增,当x(,)时,r(x),r(x)单调递减,又r(),r(),x(,),使得r(x),即当x(,x)时,r(x),当x(x,)时,r(x);综上:当x(,x)时,r(x),即h(x),h(x)单调递增;当x(x,)时,r(x),即h(x),h(x)单调递减,h(),当x时,h(x)h(),当x时,
11、易证xs i nx,h(x),且当x时,h(x),又x(,),h()ee e,方程h(x)e有两个解,即方程f(x)f(x)e有两个解,选项C正确;由F(x)f(x)ex可得f(x)exF(x),f(x)exF(x)F(x),令u(x)F(x)F(x),则u(x)F(x)F(x)xs i nxexxs i nxexxs i nxexc o sx(xs i nx)exr(x)ex,由以上分析可知,当x(,)时,r(x),即u(x),u(x)单调递增,u(x)u()F()F(),f(x),f(x)在区间(,)上单调递增,选项D正确故选A C D【答案】【解析】(x)(x)(x)x(x),展开式中x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八省八校 2023 届高三 第一次 学业 质量 评价 T8 联考 数学试卷 答案
限制150内