数学:1.1分类加法计数原理与分步乘法计数原理 课件二(新人教A版选修2-3).ppt
《数学:1.1分类加法计数原理与分步乘法计数原理 课件二(新人教A版选修2-3).ppt》由会员分享,可在线阅读,更多相关《数学:1.1分类加法计数原理与分步乘法计数原理 课件二(新人教A版选修2-3).ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新课标人教版课件系列新课标人教版课件系列高中数学选修选修2-31.1分类加法计数原理与分步乘法计数原理教学目标教学目标(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题 教学重点:教学重点:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题问题问题1:.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4 班,汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析分析:从甲地到乙地有3类方法,第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,
2、有3种方法;所以 从甲地到乙地共有 4+2+3=9 种方法。(一)新一)新课课引入:引入:问题问题2:如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?A村B村C村北南中北南 分析分析:从A村经 B村去C村有2步,第一步,由A村去B村有3种方法,第二步,由B村去C村有2种方法,所以 从A村经 B村去C村共有 3 2=6 种不同的方法。分类记数原理分类记数原理:做一件事情,完成它可以有做一件事情,完成它可以有n类办法类办法,在第一类办法中有在第一类办法中有m1种不同的方法种不同的方法,在第二类办法中有在第二类办法中有m2种不同的方法,种不同的方法
3、,在,在第第n类办法中有类办法中有mn种不同的方法。那么完成这种不同的方法。那么完成这件事共有件事共有 N=m1+m2+mn种不同的方法。种不同的方法。分步记数原理:分步记数原理:做一件事情,完成它需要分做一件事情,完成它需要分成成n个步骤,做第一步有个步骤,做第一步有m1种不同的方法,做第种不同的方法,做第二步有二步有m2种不同的方法,种不同的方法,做第,做第n步有步有mn种种不同的方法,那么完成这件事有不同的方法,那么完成这件事有 N=m1m2mn种不同的方法种不同的方法。(二)新课:二)新课:(三)例题:(三)例题:例例 1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书
4、,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少不同的取法?(2)从书架的第1,2,3层各取1本书,有多少不同的取法?分析分析:(1)从书架上任取1本书,有三类办法:第一类办法,从第1层中任取一本书,共有 m1=4 种不同的方法;第二类办法,从第2层中任取一本书,共有 m2=3 种不同的方法;第三类办法:从第3层中任取一本书,共有 m3=2 种不同的方法 所以,根据分类记数原理分类记数原理,得到不同选法种数共有 N=4+3+2=9 种。(三)例题:(三)例题:例例 1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1
5、本书,有多少不同的取法?(2)从书架的第1,2,3层各取1本书,有多少不同的取法?分析分析:(1)从书架上任取1本书,有三类办法:第一类办法,从第1层中任取一本书,共有 m1=4 种不同的方法;第二类办法,从第2层中任取一本书,共有 m2=3 种不同的方法;第三类办法:从第3层中任取一本书,共有 m3=2 种不同的方法 所以,根据分类记数原理分类记数原理,得到不同选法种数共有 N=4+3+2=9 种。点评点评:解题的关键是从总体上看做这件事情是“分类完成”,还是“分步完成”。“分类完成”用“分类记数分类记数原理原理”;“分步完成”用“分步记数原理分步记数原理”。例例2.在所有的两位数中,个位数
6、字大于十位数字的两位数共有多少个?分析分析1:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是 1个,2个,3个,4个,5个,6个,7 个,8 个.则根据分类记数原理分类记数原理共有 1+2+3+4+5+6+7+8=36(个).分析分析2:按十位数字是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别是 8个,7个,6个,5个,4个,3个,2个,1个.则根据分类记数原理分类记数原理共有 8+7+6+5+4+3+2+1=36(个)例例 3.一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位
7、上的数字允许重复)?首位数字不为0的号码数是多少?首位数字是0的号码数又是多少?分析分析:按号码位数,从左到右依次设置第一位、第二位、第三 位,第四位、需分为 四步完成;第一步,m1=10;第二步,m2=10;第三步,m2=10,第 四步,m4=10.根据分步记数原理分步记数原理,共可以设置N=101010 10=104种四位数的号码。答答:首位数字不为0的号码数是N=91010 10=9103 种,首位数字是0的号码数是 N=11010 10=103 种。由此可以看出,首位数字不为0的号码数与首位数字是0的号 码数之和等于号码总数。例例 3.一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学:1.1分类加法计数原理与分步乘法计数原理 课件二新人教A版选修2-3 数学 1.1 分类 加法 计数 原理 分步 乘法 课件 新人 选修
限制150内