数字图像处理技术-图像分割.ppt
《数字图像处理技术-图像分割.ppt》由会员分享,可在线阅读,更多相关《数字图像处理技术-图像分割.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数字图像处理图像分割图像分割浙江大学计算机学院 王 强图像分割概论v 图像分割的目的是理解图像的内容,提取出我们感兴趣的对象。v 图像分割按照具体应用的要求和具体图像的内容将图像分割成一块块区域。v 图像分割是模式识别和图像分析的预处理阶段。v 通常图像分割采用聚类方法,假设图像中组成我们所感兴趣对象的像素具有一些相似的特征,如相同的灰度值、相同的颜色等。传统的图像分割技术:基于像素灰度值的分割技术 基于区域的分割技术 基于边界的分割技术 v 图像的描述,包括边界和区域的描述v 对图像区域的操作数学形态学 灰度阈值分割法 灰度阈值分割法是最古老的分割技术 只能应用于图像中组成感兴趣对象的灰度值
2、是均匀的,并且和背景的灰度值不一样。事先决定一个阈值,当一个像素的灰度值超过这个阈值,我们就说这个像素属于我们所感兴趣的对象;反之则属于背景部分。这种方法的关键是怎样选择阈值,一种简便的方法是检查图像的直方图,然后选择一个合适的阈值。如果图像适合这种分割法,那么图像的直方图在表示对象和背景的小范围灰度值附近出现一个高峰值。适合这种分割法的图像的直方图应是双极模式,我们可以在两个峰值之间的低谷处找到一个合适的阈值。单一阈值方法也不适合于由许多不同纹理组成一块块区域的图像。v 用如下所示的循环迭代策略得到阈值1.假设图像中处于四个角的像素是属于背景部分,其它像素属于感兴趣对象,然后定义一个背景灰度
3、和对象灰度的初始值。2.通过下面的公式循环迭代直至前后两次循环得到的阈值Ti+1和Ti相差非常小,循环过程停止。uibackground和uiobject分别是循环第i次得到的背景灰度值和对象灰度值。v 这种单一阈值分割方法一种拓展就是将图像分成一个个子区域,不同的子区域采用不同的阈值。将图像分成6464重叠的子区域,并在每个子区域中检测区域的直方图是不是双极模式,如果一个区域的直方图不是双极模式,则判定该区域完全属于背景部分或对象部分。原始图像分割结果(T=170)基于纹理的分割方法v 什么是纹理纹理是图像中一个重要而又难于描述的特征,至今还没有精确的纹理定义。纹理图像在局部区域内呈现了不规
4、则性,而在整体上表现出某种规律性。v 纹理的组成一是组成图像纹理的基元另一个是这些基元之间的空间分布关系。纹理基元的空间排列可能是随机的,也可能是相互之间互相依赖,这种依赖性可能是有结构的,也可能是按某种概率分布排列的,也可能是某种函数形式的。v 纹理的描述图像纹理可以定性用许多词汇来描述,如粗糙、精细、光滑、方向性、规则性和粒度等等。但是遗憾的是要将这些语义描述转化为数学模型不是一件容易的事。一般来说图像纹理由纹理中相邻像素之间的灰度变化及纹理基元模板来描述。v 分析和测量纹理的算法(两类)从图像有关属性的统计分析出发 统计分析方法 结构分析方法 找出纹理基元,以后再从结构组成上探索纹理的规
5、律,也还有直接去探求纹理构成的结构规律。一般用统计结构尺度来量化纹理的特征,在统计结构尺度中我们不仅仅需要抓住或测量纹理在一个像素点邻近区域的变化,而且还需考虑纹理的空间结构组织,换言之,不仅仅需要考虑相邻两个像素之间的灰度变化,还要考虑它们之间的空间关系。在标注一个像素点的纹理特征时很可能是多维数据,如距离、方向、灰度变化等等。纹理分析的自相关函数方法 v 自相关函数的定义若有一幅图像f(i,j),i,j=0,1,N-1,它的自相关函数为:如果图像中灰度基元的面积比较大,则自相关函数随距离的增大,下降速度比较慢 如果灰度基元中灰度呈周期变化,则自相关函数的升降也呈周期性变化。纹理分割Hurs
6、t函数 v Hurst系数是单一数值,它的计算过程如下:1.将一个圆放在一个像素点上,逐渐增大圆的半径直至覆盖我们所需的邻域;2.检查这个圆所覆盖范围内的所有像素点的灰度值,最大和最小的灰度值定义了一个灰度值范围。3.不同相邻像素个数的对数值相对于半径的对数值就为各相邻像素的Hurst系数。l当纹理变化比较小时,Hurst系数也比较小,反之,Hurst系数比较大。其中N为不同相邻像素的个数,s是不同像素点离参考像素点的距离。各个像素离参考像素点a的距离为:N=7灰度共生矩阵的纹理分析 v 灰度共生矩阵直方图是研究单个像素的灰度统计分布特性,但不能很好地反映出像素之间空间相关性的规律。;图像纹理
7、的一个重要特征是局部区域中灰度的空间分布特性和像素位置之间的空间相关性;因此希望能找出两个像素的联合分布的统计形式。图像I为映射:水平空间定义域:垂直空间定义域:灰度值的集合 灰度共生矩阵为概率矩阵:其中Pij为距离为d的两个像素,一个像素的灰度值为i,另一个像素灰度值为j的情况在整幅图像中出现的频率。灰度共生矩阵表示空间灰度值依赖性的概率,这个灰度共生矩阵是对称的;不仅仅和两个像素之间的距离有关,还跟两个像素之间的空间角度有关。44的图像的位置坐标上图水平方向距离为1的像素对 如果角度45度以为间隔,Pij的形式如下 其中符号#表示集合中元素的个数。上述公式中距离的尺度为 一个44图像 左边
8、图像相邻像素角度为0、90、135、45度、距离为1的灰度共生矩阵 v 灰度共生矩阵抽取出来的纹理特征系数&二阶矩 二阶矩是图像灰度分布均匀性的度量。二阶矩是灰度共生矩阵像素值平方和,所以也称为能量。纹理较粗,此时二阶矩值f1较大,可以理解为粗纹理含有较多的能量;反之,二阶矩值f1较小,即细纹理含有较少的能量。&熵 熵值是图像所具有的信息量的度量 若图像没有任何纹理,则灰度共生矩阵几乎为零,则熵值f2接近为零;若图像充满细纹理,则Pij的值近似相等则该图像的熵值f2最大 若图像中分布较少的纹理,Pij的数值差别较大,则该图像的熵值f2较小&对比度 图像的对比度可以理解为图像的清晰度,即纹理清晰
9、程度。在图像中,纹理的沟纹越深,则其对比度f3越大,图像的视觉效果越是清晰。&相关 相关使用来衡量灰度共生矩阵的元素在行的方向或列的方向的相似程度。v 上述4个统计参数为应用灰度共生矩阵进行纹理分析的主要参数,可以组合起来,成为纹理分析的特征参数使用。例如,某图像具有水平方向的纹理占主导地位,则图像在0度的灰度共生矩阵的相关值往往大于90、135、45度的灰度共生矩阵的相关值。区域生长法 v 什么是区域 一般用以下性质来定义区域:图像中属于某个区域的像素点必须加以标志,当应用区域生长法来分割图像时,最终应该不存在没有被标注的像素点。在同一区域的像素点必须相连。这就意味着我们可以从现在所处的像素
10、点出发,按照某种连接方式到达任何一个邻近的像素点。常用的有两种各向同性连通方式:四连通和八连通。区域之间不能重叠,也就是说一个像素只能有一个标注。在区域Ri中每一个像素点必须遵从某种规则P(Ri)。例如我们说P(Ri)为真,当区域Ri中所有像素具有相似的灰度(相似性在一定的范围内)。两个不同的区域Ri和Rj具有的规则不同。v 区域生长法 最简单的区域生长法是将像素聚类,为了达到这一目的,我们从一个种子像素点出发,按照某种连通方式和规则P来检查周围邻近的像素点,如果具有和种子像素点相似的性质,就说明它们属于同一区域,这种算法有点类似于计算机图形学中的多边形种子填充算法。区域生长法的程序伪码 pr
11、ocedureprocedure label_region_of(I,x,y,label,intensity);ifif I(x,y)=intensity thenthenI(x,y):=label;label_region_of(I,x,y-1,label,intensity);label_region_of(I,x,y+1,label,intensity);label_region_of(I,x-1,y,label,intensity);label_region_of(I,x+1,y,label,intensity);这是一个在高层编程实现递归调用很好的方式 不过这种方法的一个主要缺点是怎
12、样获得初始的种子像素点。我们可以重新回到基于直方图的方法上来,为每一个区域寻找一个种子像素,找到具有图像直方图中峰值的像素点作为种子像素。区域分割与合并 原理将图像分割成越来越小的区域直至每个区域中的像素点具有相似的数值。这种方法的一个优点是不再需要前面所说的种子像素 L 但是它有一个明显的缺点是会使分割后的区域具有不连续的边界。ifif current region homogeneous test is FALSEthenthen split into four quadrants attempt to merge these quadrants recursively call the
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字图像 处理 技术 图像 分割
限制150内