《状态反馈系统解耦ppt课件.ppt》由会员分享,可在线阅读,更多相关《状态反馈系统解耦ppt课件.ppt(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 状态反馈系统解耦状态反馈系统解耦 组员:吴权伟 朱贤宝 曹亚杰 颜小龙病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程1状态反馈动态解耦2状态反馈静态解耦病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程1动态解耦问题的提出2系统的结构特征量3可动态解耦条件4动态解耦算法病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程
2、度的病理生理过程 在多变量系统中在多变量系统中,不同的输入和输出之间存在着耦合不同的输入和输出之间存在着耦合,即系即系统的第一个输入量不但会对第一个输出量产生影响统的第一个输入量不但会对第一个输出量产生影响,而且而且还会影响到其他的输出量。这样就造成了控制系统设计和还会影响到其他的输出量。这样就造成了控制系统设计和实际操作的困难。因此实际操作的困难。因此,控制领域的工程人员就提出了解控制领域的工程人员就提出了解耦的思想耦的思想,试图把多变量系统分解为多个单变量系统。解试图把多变量系统分解为多个单变量系统。解耦控制的思想最早是由耦控制的思想最早是由gilbertgilbert完成的。当时称为完成
3、的。当时称为MorganMorgan问题。解耦问题是多输入多输出线性定常系统综合理论的问题。解耦问题是多输入多输出线性定常系统综合理论的一个重要组成部分。其目的是寻找合适的控制规律使闭环一个重要组成部分。其目的是寻找合适的控制规律使闭环控制系统实现一个输出分量仅仅受一个输入分量控制控制系统实现一个输出分量仅仅受一个输入分量控制,而而且不同的输出分量受不同的输入分量控制且不同的输出分量受不同的输入分量控制,从而可以运用从而可以运用经典的控制系统综合方法进行系统校正经典的控制系统综合方法进行系统校正,以使系统的动静以使系统的动静态性能及各项指标满足工程实际的需要。态性能及各项指标满足工程实际的需要
4、。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程设多输入多输出连续时间线性时不变系统采用包含输入变换输入变换的状态反馈状态反馈uBCAKL 解耦控制是在系统控制理论中得到广泛研究的重要问题。现代化的工业生产装置,往往被控制的参数较多,这就要求要设置多个控制回路去控制这些参数。然而,这些回路常常会发生相互耦合、相互影响,使系统的性能变差、难于控制,甚至系统无法正常工作。u三点基本假设三点基本假设病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 3点基本假设点基本假设 (1
5、),即输入和输出具有相同的变量个数;(2)控制律采用状态反馈结合输入变换,即 其中K为 维反馈增益阵,L为 维输入变换阵,v为参考输入;相应的反馈系统结构图及包含输入变换的状态反馈图如前所示;(3)输入变换阵L为非奇异,即有 。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程则系统状态空间描述为:所谓动态解耦控制,就是寻找输入变换 和状态反馈矩阵 使得所导出的闭环传递函数矩阵为非奇异对角有理分式矩阵非奇异对角有理分式矩阵 动态解耦的实质是把一个动态解耦的实质是把一个p维输入维输入p维输出的耦合系统,通过引入适当的维输出的耦合系统,通
6、过引入适当的L,K,化为,化为p个独立的个独立的单输入单输出单输入单输出系统;系统;动态解耦综合的两个基本问题:可解耦条件和可解耦算法;动态解耦综合的两个基本问题:可解耦条件和可解耦算法;解耦控制对于解耦控制对于过程控制过程控制有着重要意义和广泛应用。有着重要意义和广泛应用。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程输出矩阵 传递函数矩阵 设方方多输入多输出连续时间线性时不变系统结构特性指数结构特性指数定义为:定义为:0 0 di n-1,-1,i=1,2,p两种定义等价两种定义等价病原体侵入机体,消弱机体防御机能,破坏机体内
7、环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程对连续时间线性时不变受控系统,对连续时间线性时不变受控系统,结构特性向量结构特性向量定义为:定义为:Ei为为1p行向量,且两种定义等价。行向量,且两种定义等价。包含输入变换状态反馈闭环系统的状态空间描述为:包含输入变换状态反馈闭环系统的状态空间描述为:其结构特征量为其结构特征量为开环和闭环结构特征量相等开环和闭环结构特征量相等病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程证明如下:对任意 ,基于 的定义,有 基此,对任意L和K,可以导出:而L非奇异,又可导出 从而,
8、由式(6.149)和式(6.150),并据 和 的定义,即可证得 和病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3.1积分型解耦系统积分型解耦系统设方方多输入多输出连续时间线性时不变系统基于结构特征向量组成的pp矩阵基于结构特性指数组成的pn矩阵 则可导出包含输入变换状态反馈系统 称为积分型积分型解耦系统。无实际应用价值理论分析应用病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3.2可解耦条件可解耦条件设方方多输入多输出连续时间线性时不变系统结论结论:对方方连续时间
9、线性时不变受控系统,使包含输入变换状态反馈系统可实实现动态解耦的充分必要条件现动态解耦的充分必要条件是:基于结构特征向量组成的pp矩阵E非奇异非奇异。基于结构特征向量结构特征向量组成的pp矩阵 虽然积分型解耦系统在实际工程中无应用价值,但是我们还是可以通过判断一个包括输入变换的状态反馈系统能否通过 转化为积分型解耦系统来判定原系统是否能进行解耦!这就是我们引入积分型解耦系统的意义。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程给定n维方连续时间线性时不变受控系统 要求综合一个输入变换和状态反馈矩阵对L,K,使系统实现动态解耦实现动
10、态解耦,并使解耦后每个单输入单输出系统实现期望极点配置。Step1:计算受控系统(A,B,C)的结构特征量 Step 2:基于结构特征向量组成并判断矩阵E的非奇异性 若E为非奇异,即能解耦,若E为奇异,则不能解耦。Step3:Step 4:导出积分型解耦系统 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程Step5:判断 的能观测性,若不完全能观测,计算 Step6:引入线性非奇异变换 化积分型积分型解耦系统为解耦规范型解耦规范型。对完全能观测,解耦规范型具有形式:病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在
11、一定部位生长繁殖,引起不同程度的病理生理过程能观性分解能观性分解di+1di+1mi-(di+1)mi-(di+1)di+1病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程Step7 求 Step8:对解耦规范型 选取 状态反馈矩阵 的结构 对完全能观测 对不完全能观测 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程Step9:对解耦后各单输入单输出系统指定期望极点组:按单输入情形极点配置法,定出状态反馈矩阵 Step10:最后得 例例6.4 p298Step11:停止
12、计算。状态反馈矩阵的这种选择必可使实现动态解耦:解耦极点配置病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程9.3.2 算例给定双输入双输出的线性定常受控系统为要求综合满足解耦和期望极点配置的一个输入变换和状态反馈矩阵下面我们根据算法9.3.1来求解该系统的输入输出解耦控制。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程第一步:计算和和因为病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程由此即可定出第二步:判
13、断解耦条件。显然可解耦性判别阵为非奇异,因此该系统可利用状态反馈加输入变换进行解耦。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程第三步:导出积分型解耦系统。定出再取则有病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程第四步:第四步:化解耦规范型。由 =1,=1和n=4,可以导出 +=4 和 ,又由于 完全能观测,可导出解耦规范型。容易看出保持为完全能观测的。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程由
14、已知能控能观测 和 ,可以定出变换矩阵为 第五步:第五步:相对于解耦规范型确定状态反馈 增益矩阵,实现希望极点配置。将取为则可得T =T =病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程再来指定解耦后的单输入单输出系统的期望特征值分别为于是通过计算就可定出从而病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程第六步:定出对给定控制系统实现解耦控制和极点配置 的控制矩阵对 第七步:定出解耦后闭环控制系统的状态空间方程和传递函数矩阵。解耦控制系统的状态方程和输出方程为病原体侵
15、入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程从而其传递函数矩阵为 由以上介绍可以看出,解耦控制大大简化了控制过程,使得对各个输入变量由以上介绍可以看出,解耦控制大大简化了控制过程,使得对各个输入变量的控制都可以单独地运行。在许多工程问题中,特别是过程控制中,解耦控制的控制都可以单独地运行。在许多工程问题中,特别是过程控制中,解耦控制有着重要意义。有着重要意义。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程1静态解耦提出原因2静态解耦概念理解3可静态解耦条件4静态解耦算法病原
16、体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 静态解耦的提出主要两点基本原因两点基本原因:1、动态解耦严重依赖系统模型,任何模型误差和参数摄动、动态解耦严重依赖系统模型,任何模型误差和参数摄动 都将破坏系统动态解耦;都将破坏系统动态解耦;2、静态解耦对模型误差和参数摄动敏感性小,从工程角度、静态解耦对模型误差和参数摄动敏感性小,从工程角度 已可满足实际需要;已可满足实际需要;病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程设多输入多输出连续时间线性时不变系统采用包含输入变
17、换输入变换L的状态反馈状态反馈KBCAKLu三点基本假设三点基本假设病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程则系统状态空间描述为:Def:所谓静态解耦静态解耦控制,就是寻找输入变换 和状态反馈矩阵 使得,所导出的含输入变换及状态反馈的闭环系统及其闭环传递函数矩阵满足两大属性两大属性:状态反馈矩阵状态反馈矩阵状态反馈矩阵状态反馈矩阵 1、闭环控制系统为渐进稳定闭环控制系统为渐进稳定,即有:也就是(A-BK)的特征值均具有负实部 (P239 结论5.23)2、闭环传递函数矩阵闭环传递函数矩阵 当s=0时为非奇异对角常数阵常数阵,
18、即有病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程静态解耦区别于区别于动态解耦的的两大特点两大特点:1.(频率域特点)当S0时,闭环传递函数矩阵 为非对角矩阵;当S=0时,为对角常数矩阵;即有病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程静态解耦区别于区别于动态解耦的的两大特点两大特点:2.(时间域特点)只适合于p维参考输入各分量为阶跃信号情况,即过渡态病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程静态解
19、耦区别于区别于动态解耦的的两大特点两大特点:2.(时间域特点(续)(续)稳态病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 结论:结论:存在输入变换和状态反馈矩阵对L,K,其中 可使方n维连续时间线性时不变受控系统实现静态解耦,当且仅当:1.受控系统可由状态反馈镇定;2.受控系统系数矩阵满足:证明:分三步证明:1.秩关系矩阵变换;2.证充分性;由已知系统镇定与系数矩阵秩关系等式推导系统静态解耦,即两大属性;3.证必要性;由已知两大属性推导系统镇定与系数矩阵秩关系等式;病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且
20、在一定部位生长繁殖,引起不同程度的病理生理过程 秩关系矩阵变换 基于 存在式6.193病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 证明充分性已知:解耦条件:1.受控系统可由状态反馈镇定;2.两大属性:1.反馈系统渐进稳定;2.为非奇异对角常数阵1.由状态反馈镇定可知,必存在 使即,状态反馈系统渐进稳定;2.由 可知 ,(A-BK)为非奇异,即 存在,结合式6.193 及秩关系等式可导出:即,矩阵 为非奇异 ;病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 证明充分
21、性(续)取输入变换阵其中 矩阵 取为:即 为非奇异对角常数阵因此,系统可由L,K实现静态解耦;充分性得证;病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 证明必要性可解耦条件:1.受控系统可由状态反馈镇定;2.已知:解耦两大属性:1.反馈系统渐进稳定;2.为非奇异对角常数阵1.由系统可解耦,可知存在L,K使得系统渐进稳定,且为非奇异对角阵由系统渐进稳定可得知,受控系统可由状态反馈镇定;(条件一成立)且易得知,存在 2.非奇异,且已知L非奇异,可推导 非奇异 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位
22、生长繁殖,引起不同程度的病理生理过程 证明必要性(续)由于已得知 存在,可结合式非奇异可导出:条件二成立因此,必要性得证病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程 Step1:判断受控系统A,B的能镇定性,若为能镇定,进入下一步,否则转入Step7。Step2:判断受控系统 若满足,进入下一步,否则转入 Step7。Step3:综合pn镇定状态反馈阵K,按多输入情形极点配置算法计算K。Step4:按系统期望要求指定稳态增益即 组成 Step5:计算 ,计算 的逆。Step6:计算 。且L,K为综合导出的输入变换和状态反馈阵,并
23、有 。Step7:停止计算。病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程给定线性连续时不变系统:1)判断系统能否由输入变换和状态反馈矩阵实现系统静态解耦?2)若能,请定出使实现系统静态解耦的输入变换和状态反馈矩阵L,K病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程解:2)判断矩阵秩关系等式是否成立:可知,系统完全能控,由此可判断系统可镇定(条件一)1)判断系统镇定性:条件二也成立,因此系统可通过L,K实现静态解耦 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程3)确定状态反馈阵K,使(A-BK)的特征值都具有负实部;不失一般性,选闭环系统期望极点为:-1,-2,-3 按多输入情形极点配置算法计算K得:(p273)4)按解耦后各单输入单输出稳态增益确定取即,5)计算输入变换矩阵
限制150内