粒子群优化算法ppt课件.pptx
《粒子群优化算法ppt课件.pptx》由会员分享,可在线阅读,更多相关《粒子群优化算法ppt课件.pptx(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统智能控制课题报告粒子群优化算法Particle Swarm Optimization篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统目录CONTENT算法简介 ALGORITHM INTRODUCTION01算法原理ALGORITHM PRINCIPLE02PSO和其他算法OTHERS03程序演示 PROGRAM SHOW04篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的
2、系统算法简介 ALGORITHM INTRODUCTION01篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统粒子群算法设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。算法介绍01篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统算法介绍01 PSO产生背景之一:CAS 我们把系统中的成员称为具有适应性的主体(Ad
3、aptive Agent),简称为主体。所谓具有适应性,就是指它能够与环境以及其它主体进行交流,在这种交流的过程中“学习”或“积累经验”,并且根据学到的经验改变自身的结构和行为方式。整个系统的演变或进化,包括新层次的产生,分化和多样性的出现,新的、聚合而成的、更大的主体的出现等等,都是在这个基础上出现的。即CAS(复杂适应系统)理论的最基本思想篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统算法介绍01CAS的四个基本特点:首先,主体(Adaptive Agent)是主动的、活的实体;其次,个体与环境(包括个体之间)的相互影响,相互作
4、用,是系统演变和进化的主要动力;再次,这种方法不象许多其他的方法那样,把宏观和微观截然分开,而是把它们有机地联系起来;最后,这种建模方法还引进了随机因素的作用,使它具有更强的描述和表达能力。篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统算法介绍01PSO产生背景之二:人工生命 研究具有某些生命基本特征的人工系统。包括两方面的内容:1、研究如何利用计算技术研究生物现象;2、研究如何利用生物技术研究计算问题。我们关注的是第二点。已有很多源于生物现象的计算技巧,例如神经网络和遗传算法。现在讨论另一种生物系统-社会系统:由简单个体组成的群落
5、和环境及个体之间的相互行为。Millonas在开发人工生命算法时(1994年),提出群体智能概念并提出五点原则:1、接近性原则:群体应能够实现简单的时空计算;2、优质性原则:群体能够响应环境要素;3、变化相应原则:群体不应把自己的活动限制在一狭小范围;4、稳定性原则:群体不应每次随环境改变自己的模式;5、适应性原则:群体的模式应在计算代价值得的时候改变。篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统算法介绍01 社会组织的全局群行为是由群内个体行为以非线性方式出现的。个体间的交互作用在构建群行为中起到重要的作用。从不同的群研究得到不
6、同的应用。最引人注目的是对蚁群和鸟群的研究。其中粒群优化方法就是模拟鸟群的社会行为发展而来。对鸟群行为的模拟:Reynolds、Heppner和Grenader提出鸟群行为的模拟。他们发现,鸟群在行进中会突然同步的改变方向,散开或者聚集等。那么一定有某种潜在的能力或规则保证了这些同步的行为。这些科学家都认为上述行为是基于不可预知的鸟类社会行为中的群体动态学。在这些早期的模型中仅仅依赖个体间距的操作,也就是说,这种同步是鸟群中个体之间努力保持最优的距离的结果。篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统算法介绍01 PSO(粒子群优
7、化算法(Particle Swarm Optimization),缩写为 PSO)从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBes
8、t。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统算法介绍01 PSO是近年来由J.Kennedy和R.C.Eberhart等 开发的一种新的进化算法(Evolutionary Algorithm-EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover)和“变异”(Mutation)操作,它通过
9、追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统算法原理 ALGORITHM PRINCIPLE02篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统抽象 鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子I 在N维空间的位置表示为矢量Xi(x1,x2,xN),飞行速度表示为矢量Vi(v1,v2,vN)每个粒
10、子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi这个可以看作是粒子自己的飞行经验除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值)这个可以看作是粒子同伴的经验粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。算法原理02篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbes
11、t,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。(1)式(2)式在式(1)、(2)中,i1,2,M,M是该群体中粒子的总数 算法原理02篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统Vi 是粒子的速度;pbest和gbest如前定义;rand()是介于(0、1)之间的随机数;Xi 是粒子的当前位置。c1和c2是学习因子,通常取c1 c22在每一维,粒子都有一个最大限制速度Vmax,如果某一维的速度超过设定的Vmax,那么这一维的速度就被限定为Vmax。(Vmax 0)以上面两个公式为基础,
12、形成了后来PSO 的标准形式算法原理02篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统 从社会学的角度来看,公式(1)的第一部分称为记忆项,表示上次速度大小和方向的影响;公式第二部分称为自身认知项,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;公式的第三部分称为群体认知项,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。以上面两个公式为基础,形成了后来PSO 的标准形式算法原理02篮球比赛是根据运动队在规定的比赛时间里得分
13、多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统 标准标准PSOPSO算法的流程:算法的流程:Step1:Step1:初始化一群微粒初始化一群微粒(群体规模为群体规模为m)m),包括随机位置和速度;,包括随机位置和速度;Step2:Step2:评价每个微粒的适应度;评价每个微粒的适应度;Step3:Step3:对每个微粒,将其适应值与其经过的最好位置对每个微粒,将其适应值与其经过的最好位置pbestpbest作比较,作比较,如果较好,则将其作为当前的最好位置如果较好,则将其作为当前的最好位置pbest;pbest;Step4:Step4:对每个微粒,将其适应值与其经过的最好位
14、置对每个微粒,将其适应值与其经过的最好位置gbestgbest作比较,作比较,如果较好,则将其作为当前的最好位置如果较好,则将其作为当前的最好位置gbest;gbest;Step5:Step5:根据根据(2)(2)、(3)(3)式调整微粒速度和位置;式调整微粒速度和位置;Step6Step6:未达到结束条件则转:未达到结束条件则转Step2Step2。算法原理02篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统 1998年shi等人在进化计算的国际会议上发表了一篇论文A modified particle swarmoptimizer
15、对前面的公式(1)进行了修正。引入惯性权重因子。(3)式 非负,称为惯性因子。公式(2)和(3)被视为标准pso算法。算法原理02篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统算法原理02篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统算法原理02篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统 迭代终止条件根据具体问题一般选为最大迭代次数Gk或(和)微粒群迄今为止搜索到的最优位置满足预定最小适应阈值算法原理02篮
16、球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统 方程方程(2)(2)和和(3)(3)中中pbestpbest和和gbestgbest分别表示微粒群的局分别表示微粒群的局部和全局最优位置,当部和全局最优位置,当C1C10 0时,则粒子没有了认知能时,则粒子没有了认知能力,变为只有社会的模型力,变为只有社会的模型(social-only):(social-only):被称为全局被称为全局PSOPSO算法算法.粒子有扩展搜索空间的能力,具有粒子有扩展搜索空间的能力,具有较快的收敛速度,但由于缺少局部搜索,对于复杂问题较快的收敛速度,但由于缺
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 粒子 优化 算法 ppt 课件
限制150内