流体流动连续性方程和动量方程.ppt
《流体流动连续性方程和动量方程.ppt》由会员分享,可在线阅读,更多相关《流体流动连续性方程和动量方程.ppt(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、实质:质量守恒1.连续性方程的微分形式oyxzdmxdmxdxdydzdt时间内x方向:流入质量流出质量净流出质量连续性方程同理:dt时间内,控制体总净流出质量:由质量守恒:控制体总净流出质量,必等于控制体内由于密度变化而减少的质量,即连续性方程的微分形式不可压缩流体即例:已知速度场 此流动是否可能出现?解:由连续性方程:满足连续性方程,此流动可能出现例:已知不可压缩流场ux=2x2+y,uy=2y2+z,且在z=0处uz=0,求uz。解:由得积分由z=0,uz=0得c=02.连续性方程的积分形式A1A212v1v2在dt时间内,流入断面1的流体质量必等于流出断面2的流体质量,则连续性方程的积
2、分形式不可压缩流体分流时合流时刚体平移、旋转流体平移、旋转、变形(线变形、角变形)平移线变形旋转角变形流体微元的运动分析流体微元的速度:1.平移速度:ux,uy,uz2.线变形速度:x方向线变形是单位时间微团沿x方向相对线变形量(线变形速度)同理存在各质点在连线方向的速度梯度是产生线变形的原因3.旋转角速度:角平分线的旋转角速度逆时针方向的转角为正顺时针方向的转角为负是微团绕平行于oz轴的旋转角速度同理微团的旋转:4.角变形速度:直角边与角平分线夹角的变化速度微团的角变形:存在不在质点连线方向的速度梯度是产生旋转和角变形的原因是微团在xoy平面上的角变形速度同理例:平面流场ux=ky,uy=0
3、(k为大于0的常数),分析流场运动特征解:流线方程:线变形:角变形:旋转角速度:xyo(流线是平行与x轴的直线族)(无线变形)(有角变形)(顺时针方向为负)例:平面流场ux=ky,uy=kx(k为大于0的常数),分析流场运动特征解:流线方程:(流线是同心圆族)线变形:(无线变形)角变形:(无角变形)旋转角速度:(逆时针的旋转)刚体旋转流动1.有旋流动2.无旋流动即:有旋流动和无旋流动例:速度场ux=ay(a为常数),uy=0,流线是平行于x轴的直线,此流动是有旋流动还是无旋流动?解:是有旋流xyoux相当于微元绕瞬心运动流体流流体流动控制方程控制方程Governing equationshigh-Reynolds-number k-model Mass conservation or continuity equation Navier-Stocks equations for velocity components u,v,and wEquations for turbulence energy k and dissipation rateEnergy equation for the temperature TMass transfer equation for humidity D General form of differential equation:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 流体 流动 连续性 方程 动量
限制150内