浙教版中考数学四边形与证明.ppt
《浙教版中考数学四边形与证明.ppt》由会员分享,可在线阅读,更多相关《浙教版中考数学四边形与证明.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考复习准备好了吗?阳泉市义井中学阳泉市义井中学 高铁牛高铁牛时刻准备着!20052005年年课程标准及学习目标课程标准及学习目标(5)四边形四边形 探探索索并并了了解解多多边边形形的的内内角角和和与与外外角角和公式,了解正多边形的概和公式,了解正多边形的概 念。念。掌掌握握平平行行四四边边形形、矩矩形形、菱菱形形、正正方方形形、梯梯形形的的概概念念和和性性质质,了了解解它它们们之之间的关系;了解四边形的不稳定性。间的关系;了解四边形的不稳定性。探探索索并并掌掌握握平平行行四四边边形形的的有有关关性性质质1和四边形是平行四边形的条件和四边形是平行四边形的条件2。探索并掌握矩形、菱形、正方形的探
2、索并掌握矩形、菱形、正方形的有关性质有关性质3和四边形是矩形、菱形、正和四边形是矩形、菱形、正方形的条件方形的条件4 探探索索并并了了解解等等腰腰梯梯形形的的有有关关性性质质5和四边形是等腰梯形的条件和四边形是等腰梯形的条件6。探探索索并并了了解解线线段段、矩矩形形、平平行行四四边边形形、三三角角形形的的重重心心及及物物理理意意义义(如如一一根根均均匀匀木木棒棒、一一块块均均匀匀的的矩矩形形木木板板的的重重心心)。通过探索平面图形的镶嵌,知道任通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简镶嵌平面,并能运用这
3、几种图形进行简单的镶嵌设计。单的镶嵌设计。【备注备注2】:1平平行行四四边边形形的的对对边边相相等等、对对角角相相等等、对角线互相平分。对角线互相平分。2一一组组对对边边平平行行且且相相等等,或或两两组组对对边边分分别别相相等等,或或对对角角线线互互相相平平分分的的四四边边形形是平行四边形。是平行四边形。33矩形的四个角都是直角,对角线矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相相等;菱形的四条边相等,对角线互相垂直平分。垂直平分。4三三个个角角是是直直角角的的四四边边形形,或或对对角角线线相相等等的的平平行行四四边边形形是是矩矩形形;四四边边相相等等的的四四边边形形,或或对
4、对角角线线互互相相垂垂直直的的平平行行四四边形是菱形。边形是菱形。5等等腰腰梯梯形形同同一一底底上上的的两两底底角角相相等等,两条对角线相等。两条对角线相等。6同一底上的两底角相等的梯形是同一底上的两底角相等的梯形是等腰梯形。等腰梯形。(1)(1)了解证明的含义了解证明的含义 理解证明的必要性。理解证明的必要性。通通过过具具体体的的例例子子,了了解解定定义义、命命题题、定定理理的含义,会区分命题的条件的含义,会区分命题的条件(题设题设)和结论。和结论。结结合合具具体体例例子子,了了解解逆逆命命题题的的概概念念,会会识识别别两两个个互互逆逆命命题题,并并知知道道原原命命题题成成立立其其逆逆命命题
5、题不不一定成立。一定成立。通通过过具具体体的的例例子子理理解解反反例例的的作作用用,知知道道利利用反例可以证明一个命题是错误的。用反例可以证明一个命题是错误的。通过实例,体会反证法的含义。通过实例,体会反证法的含义。掌掌握握用用综综合合法法证证明明的的格格式式,体体会会证证明明的的过过程要步步有据。程要步步有据。4 4图形与证明图形与证明 (2)(2)掌掌握握以以下下基基本本事事实实,作作为为证证明明的的依依据据 一一条条直直线线截截两两条条平平行行直直线线所所得得的的同位角相等。同位角相等。两两条条直直线线被被第第三三条条直直线线所所截截,若若同位角相等,那么这两条直线平行。同位角相等,那么
6、这两条直线平行。若若两两个个三三角角形形的的两两边边及及其其夹夹角角(或或两两角角及及其其夹夹边边,或或三三边边)分分别别相相等等,则这两个三角形全等。则这两个三角形全等。全全等等三三角角形形的的对对应应边边、对对应应角角分分别相等。别相等。(3)(3)利用利用(2)(2)中的基本事实证明下列命题中的基本事实证明下列命题11 平平行行线线的的性性质质定定理理(内内错错角角相相等等、同同旁旁内内角角互互补补)和和判判定定定定理理(内内错错角角相相等等或或同同旁旁内角互补,则两直线平行内角互补,则两直线平行)。三三角角形形的的内内角角和和定定理理及及推推论论(三三角角形形的的外外角角等等于于不不相
7、相邻邻的的两两内内角角的的和和,三三角角形形的的外角大于任何一个和它不相邻的内角外角大于任何一个和它不相邻的内角)。直角三角形全等的判定定理。直角三角形全等的判定定理。角角平平分分线线性性质质定定理理及及逆逆定定理理;三三角角形形的三条角平分线交于一点的三条角平分线交于一点(内心内心)。垂垂直直平平分分线线性性质质定定理理及及逆逆定定理理;三三角角形的三边的垂直平分线交于一点形的三边的垂直平分线交于一点(外心外心)。三角形中位线定理。三角形中位线定理。等等腰腰三三角角形形、等等边边三三角角形形、直直角角三三角角形的性质和判定定理。形的性质和判定定理。平平行行四四边边形形、矩矩形形、菱菱形形、正
8、正方方形形、等腰梯形的性质和判定定理。等腰梯形的性质和判定定理。(4)(4)通通过过对对欧欧几几里里得得原原本本的的介介绍绍,感感受受几几何何的的演演绎绎体体系系对对数数学学发发展展和和人人类类文文明明的的价值。价值。四边形四边形一、四边形的分类及转化一、四边形的分类及转化二、几种特殊四边形的性质二、几种特殊四边形的性质三、几种特殊四边形的常用判定方三、几种特殊四边形的常用判定方法法四、中心对称图形与中心对称的区四、中心对称图形与中心对称的区别和联系别和联系五、有关定理五、有关定理六、主要画图六、主要画图七、典型举例七、典型举例 一、四边形的分类及转化一、四边形的分类及转化任意四边形任意四边形
9、平行四边形平行四边形矩形矩形菱菱形形正方形正方形梯形梯形等腰梯形等腰梯形直角梯形直角梯形两组对边平行两组对边平行一个角是一个角是直角直角邻边相等邻边相等邻边邻边相等相等一个角是一个角是直角直角一个角是一个角是直角直角两腰相等两腰相等一组对边平行一组对边平行另一组对边不平行另一组对边不平行 项目项目四边形四边形对边对边角角对角线对角线对称性对称性平行四边形平行四边形矩形矩形菱形菱形正方形正方形等腰梯形等腰梯形平行且相等平行且相等平行且相等平行且相等平行平行且四边相等且四边相等平行平行且四边相等且四边相等两底平行两底平行两腰相等两腰相等对角相等对角相等邻角互补邻角互补四个角四个角都是直角都是直角同
10、一底上同一底上的角相等的角相等对角相等对角相等邻角互补邻角互补四个角四个角都是直角都是直角互相平分互相平分互相平分且相等互相平分且相等互相垂直平分,且每一互相垂直平分,且每一条对角线平分一组对角条对角线平分一组对角相等相等互相垂直平分且相等,每互相垂直平分且相等,每一条对角线平分一组对角一条对角线平分一组对角中心对称图形中心对称图形中心对称图形中心对称图形轴对称图形轴对称图形中心对称图形中心对称图形轴对称图形轴对称图形中心对称图形中心对称图形轴对称图形轴对称图形轴对称图形轴对称图形二、几种特殊四边形的性质:二、几种特殊四边形的性质:四边形四边形条件条件平行平行四边形四边形矩形矩形菱形菱形正方形
11、正方形等腰梯形等腰梯形三、几种特殊四边形的常用判定方法:三、几种特殊四边形的常用判定方法:1 1、定义:两组对边分别平行、定义:两组对边分别平行 2 2、两组对边分别相等、两组对边分别相等3 3、一组对边平行且相等、一组对边平行且相等 4 4、对角线互相平分、对角线互相平分1 1、定义:有一外角是直角的平行四边形、定义:有一外角是直角的平行四边形 2 2、三个角是直角的四边形、三个角是直角的四边形3 3、对角线相等的平行四边形、对角线相等的平行四边形1 1、定义:一组邻边相等的平行四边形、定义:一组邻边相等的平行四边形 2 2、四条边都相等的四边形、四条边都相等的四边形3 3、对角线互相垂直的
12、平行四边形、对角线互相垂直的平行四边形1 1、定义:一组邻边相等且有一个角是直角的平行四边形、定义:一组邻边相等且有一个角是直角的平行四边形2 2、有一组邻边相等的矩形、有一组邻边相等的矩形 3 3、有一个角是直角的菱形、有一个角是直角的菱形1 1、两腰相等的梯形、两腰相等的梯形 2 2、在同一底上的两角相等的梯形、在同一底上的两角相等的梯形 3 3、对角线相等的梯形、对角线相等的梯形四、中心对称图形与中心对称的区别和联系四、中心对称图形与中心对称的区别和联系中心对称图形:中心对称:如果把一个图形绕着某一点旋转180后与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。如果把一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙教版 中考 数学 四边形 证明
限制150内