第3章 模糊控制论-理论基础.ppt
《第3章 模糊控制论-理论基础.ppt》由会员分享,可在线阅读,更多相关《第3章 模糊控制论-理论基础.ppt(91页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第3章章 模糊控制论模糊控制论理论基础理论基础智能控制基础智能控制基础目录目录3.1 引言3.2 模糊集合论基础3.4 模糊控制系统的组成3.5 模糊控制系统的设计3.6 模糊PID控制器3.7 模糊控制器的应用3.3 模糊逻辑、模糊逻辑推理和合成2/模糊控制的发展历史模糊控制的发展历史v1965年,年,L.A.Zadeh 提出模糊集理论;提出模糊集理论;v1972年,年,L.A.Zadeh 提出模糊控制原理;提出模糊控制原理;v1974年,年,E.H.Mamdani应用于蒸汽机和锅炉应用于蒸汽机和锅炉控制中;控制中;v80年代:污水处理、汽车、交通管理年代:污水处理、汽车、交通管理 模糊芯
2、片、模糊控制的硬件系统;模糊芯片、模糊控制的硬件系统;v90年代:家电、机器人、地铁;年代:家电、机器人、地铁;v21世纪:更为广泛的应用。世纪:更为广泛的应用。3/模糊控制的特点模糊控制的特点v无需知道被控对象的数学模型无需知道被控对象的数学模型 v与人类思维的特点一致与人类思维的特点一致n模糊性n经验性v构造容易构造容易v鲁棒性好鲁棒性好4/主要内容主要内容v模糊控制的理论基础模糊控制的理论基础n模糊集合论基础n模糊逻辑、模糊逻辑推理和合成v模糊控制系统模糊控制系统n模糊控制系统的组成n模糊控制系统的设计n模糊PID控制器n模糊控制器的应用5/目录目录3.1 引言3.2 模糊集合论基础3.
3、4 模糊控制系统的组成3.5 模糊控制系统的设计3.6 模糊PID控制器3.7 模糊控制器的应用3.3 模糊逻辑、模糊逻辑推理和合成6/3.2 模糊集合论基础模糊集合论基础3.3.1 模糊集概念3.3.2 模糊集合运算3.3.3 模糊集合运算的基本性质3.3.4 隶属度函数的建立3.3.5 模糊关系7/经典集合经典集合19世纪末德国数学家乔康托(Georage Contor,1845-1918),是现代数学的基础。内涵和外延都必须是明确的经典集合论表示方法特点列举法定义法归纳法特征函数法8/表示方法表示方法列举法:U=1,2,3,4,5,6,7,8,9,10 归纳法:U=ui+1=ui+1,i
4、=1,2,9,u1=1 特征函数法定义法:U=u|u为自然数且u0的所有的所有u组成的,即组成的,即13/模糊单点模糊单点(Singleton)v如果模糊集合如果模糊集合F的子集在论域的子集在论域U上只包含一个上只包含一个点点u0,且且F(u0)=1,则则F就称为模糊单点。即就称为模糊单点。即14/3.2 模糊集合论基础模糊集合论基础3.3.1 模糊集概念3.3.2 模糊集合运算3.3.3 模糊集合运算的基本性质3.3.4 隶属度函数的建立3.3.5 模糊关系15/3.3.2 模糊集合的运算模糊集合的运算v考察具有公共论域考察具有公共论域U的模糊集合的模糊集合A、B之间的之间的各种运算关系,包
5、括以下内容:各种运算关系,包括以下内容:相等、包含相等、包含空集、全集空集、全集交、并、补交、并、补其他其他16/相等、包含相等、包含 空集、全集空集、全集对于所有的uU,均有A(u)B(u)。记作A=B。相等相等对于所有的uU,均有A(u)B(u)。记作AB。包含包含对于所有的uU,均有A(u)0。记作:A 。空集空集对于所有的uU,均有A(u)1。全集全集17/交、并、补交、并、补v如果模糊集合如果模糊集合C具有以下性质:具有以下性质:对于所有的uU,均有C(u)=AB=minA(u),B(u)则称C为A与B的交集,记为 C=AB 交集交集对于所有的uU,均有C(u)=AB=maxA(u)
6、,B(u)。则称C为A与B的并集,记为 C=AB。并集并集对于所有的uU,均有B(u)=1-A(u)则称B为A的补集,记作补集补集18/举例举例v已知模糊子集已知模糊子集v求求19/求解求解20/代数积代数和有界和有界差有界积其它运算其它运算21/3.2 模糊集合论基础模糊集合论基础3.3.1 模糊集概念3.3.2 模糊集合运算3.3.3 模糊集合运算的基本性质3.3.4 隶属度函数的建立3.3.5 模糊关系22/幂等律结合律交换律分配律模糊集合运算的基本性质模糊集合运算的基本性质1 23/同一律零一律吸收律德摩根律双重否认律 模糊集合运算的基本性质模糊集合运算的基本性质224/与经典集合性质
7、的比较与经典集合性质的比较v基本性质完全相同基本性质完全相同 v模糊集运算不满足互补律模糊集运算不满足互补律 25/3.2 模糊集合论基础模糊集合论基础3.3.1 模糊集概念3.3.2 模糊集合运算3.3.3 模糊集合运算的基本性质3.3.4 隶属度函数的建立26/是一个关键问题是一个关键问题是一个关键问题是一个关键问题是一个难题是一个难题是一个难题是一个难题具有具有具有具有“模糊性模糊性模糊性模糊性”、经验性、经验性、经验性、经验性 和主观性和主观性和主观性和主观性无统一的设计方法无统一的设计方法无统一的设计方法无统一的设计方法具有客观的原则具有客观的原则具有客观的原则具有客观的原则隶属度函
8、数的建立隶属度函数的建立 27/隶属度函数的常见形状隶属度函数的常见形状1vZ函数函数28/隶属度函数的常见形状隶属度函数的常见形状2vS函数函数29/隶属度函数的常见形状隶属度函数的常见形状3v函数函数30/隶属度函数的设计原则隶属度函数的设计原则1v必须是凸模糊集合(呈单峰形)必须是凸模糊集合(呈单峰形)v通常是对称和平衡的通常是对称和平衡的v要遵从语意顺序、避免不恰当的重叠要遵从语意顺序、避免不恰当的重叠 31/隶属度函数的设计原则隶属度函数的设计原则2v考虑重叠指数(一般取重叠率为考虑重叠指数(一般取重叠率为0.20.6、或鲁棒重叠性或鲁棒重叠性0.3-0.7)32/举例举例重叠率=0
9、重叠鲁棒性=0重叠率=5/35=0.143重叠鲁棒性3.5/10=0.25重叠率=10/33=0.333重叠鲁棒性=10/20=0.533/设计方法设计方法v模糊统计法模糊统计法v例证法例证法 v专家经验法专家经验法 v二元对比排序法二元对比排序法 34/3.2 模糊集合论基础模糊集合论基础3.3.1 模糊集概念3.3.2 模糊集合运算3.3.3 模糊集合运算的基本性质3.3.4 隶属度函数的建立3.3.5 模糊关系35/模糊关系模糊关系 v普通关系:表示元素之间是否关联。普通关系:表示元素之间是否关联。v模糊关系模糊关系:表示两个论模糊集合之间的关联:表示两个论模糊集合之间的关联程度,用其直
10、积空间的隶属度函数表示。程度,用其直积空间的隶属度函数表示。v定义:所谓定义:所谓A,B两集合的直积两集合的直积 中的一个模糊关系中的一个模糊关系R,是指以,是指以AB为论域的为论域的一个模糊子集,序偶一个模糊子集,序偶(a,b)的隶属度为的隶属度为R(a,b)。36/多元关系多元关系v二元关系二元关系 v多元关系:考察多元关系:考察n个集合的直积个集合的直积 A1A3.An,其隶属度函数为:其隶属度函数为:R(a1,a2,.,an)37/v模糊集合表示法模糊集合表示法 v举例举例考查两个整数间的考查两个整数间的“大得多大得多”的关系。设论的关系。设论域域 U=1,5,7,9,20。模糊关系的
11、表示方法模糊关系的表示方法138/模糊关系的表示方法模糊关系的表示方法2v模糊矩阵表示法模糊矩阵表示法(适用于二元关系)(适用于二元关系)v其中其中39/笛卡尔积算子(笛卡尔积算子(算子)算子)vA1,A2,.,An的笛卡尔积是在积空间U1U2.Un中的一个模糊集,其隶属度函数为:n直积(极小算子)用 min 表示 n代数积:用 AP 表示 40/例例3-9 v考虑如下模糊条件语句考虑如下模糊条件语句如果如果 C 是慢的,则是慢的,则 A 是快的。是快的。其中其中 C,A分别属于两个不同的论域分别属于两个不同的论域U,V。其隶属度函数分别为:其隶属度函数分别为:A=快快=0/0+0/20+0.
12、3/40+0.7/60+1/80+1/100;C=慢慢=1/0+0.7/20+0.3/40+0/60+0/80+0/100。v求求 它们的直积和代数积。它们的直积和代数积。41/直积直积42/代数积代数积43/模糊关系的合成模糊关系的合成 v背景:背景:已知:已知:IF A THEN B,IF B THEN C 求:求:IF A THEN Cv定义:如果定义:如果R和和S分别为笛卡尔空间分别为笛卡尔空间UV和和VW上的模糊关系,则上的模糊关系,则R和和S的合成是定义在的合成是定义在笛卡尔空间笛卡尔空间UVW上的模糊关系,并记为上的模糊关系,并记为 RoS。其隶属度函数的计算方法有两种。其隶属度
13、函数的计算方法有两种。44/模糊关系的合成的隶属度函数计算模糊关系的合成的隶属度函数计算v上确界(上确界(Sup)算子算子 v下确界(下确界(Inf)算子:算子:45/例例3-10 v已知某家中子女与父母的长像相似关系已知某家中子女与父母的长像相似关系R:父母与祖父母的相似关系父母与祖父母的相似关系S:求:家中孙子、孙女与祖父、祖母的相似程度。求:家中孙子、孙女与祖父、祖母的相似程度。R父父母母子0.20.8女0.60.1S祖父祖父祖母祖母父0.50.7母0.1046/解解47/合成算子合成算子Sup-min的特性的特性1 分配率分配率48/结合律包含转置运算不满足交换律合成算子合成算子Sup
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第3章 模糊控制论-理论基础 模糊 控制论 理论基础
限制150内