行列式定义性质与计算.ppt
《行列式定义性质与计算.ppt》由会员分享,可在线阅读,更多相关《行列式定义性质与计算.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、线性代数下页结束返回2009-2010第一学期线性代数任课教师:时彬彬时彬彬部 门:信息学院信息学院办公室:文理大楼文理大楼 718 718 室室E-mail:下页线性代数下页结束返回一、研究对象一、研究对象二、核心方法二、核心方法下页以讨论线性方程组的解为基础,研究线性空间的结构、线性变换的形式以讨论线性方程组的解为基础,研究线性空间的结构、线性变换的形式.线性代数研究对象与逻辑结构概述通过通过初等变换初等变换,将方程组化为最简形式的同解方程组求解,将方程组化为最简形式的同解方程组求解.主要流程为:主要流程为:方程组方程组行最简形矩阵行最简形矩阵方程组的解方程组的解初等行变换初等行变换矩阵矩
2、阵线性代数下页结束返回三、逻辑结构三、逻辑结构下页方程组有解?方程组有解?是唯一解?是唯一解?无解,停无解,停求唯一解,停求唯一解,停求通解,停求通解,停YNYN例例1显然,此方程组无解显然,此方程组无解.例例2显然,此方程组有无穷多解显然,此方程组有无穷多解.例例4此方程组如何求解此方程组如何求解?例例3显然,此方程组有唯一解显然,此方程组有唯一解.a11x1+a12x2+a1nxn=b1a21x1+a22x2+a2nxn=b2am1x1+am2x2+amnxn=bm ,线性代数下页结束返回下页附:附:关于关于作业作业和和作业纸作业纸问题问题1统一要求使用专用的作业纸;作业纸不足者,可联统一
3、要求使用专用的作业纸;作业纸不足者,可联合购买使用,由课代表联系任课教师办理;合购买使用,由课代表联系任课教师办理;2作业由课代表同学收齐后,于下周第一次课前交给作业由课代表同学收齐后,于下周第一次课前交给任课老师,并注意以下问题:任课老师,并注意以下问题:作业首页上写清楚个人的学号;作业首页上写清楚个人的学号;课代表同学的作业,在学号后标注课代表同学的作业,在学号后标注_K _K;课代表同学负责:课代表同学负责:将每个同学的作业的左上角将每个同学的作业的左上角用订书机订好(用订书机订好(建议用班费为课代表配订书机建议用班费为课代表配订书机););将将收齐后的作业按从小到大的学号顺序排序收齐后
4、的作业按从小到大的学号顺序排序.四、基本要求四、基本要求理解内在逻辑,掌握运算技能;记录分析思路,及时完成作业理解内在逻辑,掌握运算技能;记录分析思路,及时完成作业.线性代数下页结束返回第第1 1章章 行列式行列式1.1 1.1 二三阶行列式二三阶行列式 考虑用消元法解二元一次方程组考虑用消元法解二元一次方程组 (a11a22-a12a21)x2=a11b2-b1a21 (a11a22-a12a21)x1=b1a22-a12b2第第1 1节节 行列式的概念行列式的概念用用a22和和a12分别乘以两个方程的两端,然后两个方程相减,消去分别乘以两个方程的两端,然后两个方程相减,消去x2得得 同理,
5、消去同理,消去x1得得当时,方程组的解为时,方程组的解为下页二阶行列式二阶行列式 线性代数下页结束返回当时,方程组的解为时,方程组的解为为便于叙述和记忆,为便于叙述和记忆,引入符号引入符号D=D1=称称D为二阶行列式二阶行列式.按照二阶行列式定义可得按照二阶行列式定义可得D2=于是,当于是,当D00时,方程组的解为时,方程组的解为下页线性代数下页结束返回 j=1,2,3类似引入符号类似引入符号其中其中D1,1,D2,2,D3 3分别为将分别为将D的第的第1 1、2 2、3 3列换为常数项后得到的行列式列换为常数项后得到的行列式.三阶行列式三阶行列式 求解三元方程组求解三元方程组称称D为三阶行列
6、式三阶行列式.下页线性代数下页结束返回25431 是一个是一个5级排列级排列.如如,3421 是是4级排例;级排例;例例1写出所有的写出所有的3级全排列级全排列.解:解:所有的所有的3级排列为:级排列为:321.312,231,213,132,123,1.2 1.2 排列排列 n 个自然数个自然数1,2,n 按一定的次序排成的一个无重复数字的有序按一定的次序排成的一个无重复数字的有序数组称为一个数组称为一个 n 级排列,记为级排列,记为i1i2in.显然,显然,n 级排列共有个级排列共有个n!.其其中,排列中,排列12n称为称为自然排列自然排列.下页线性代数下页结束返回3 4 2 1逆序数的计
7、算方法逆序数的计算方法(向前看法向前看法)43 2 1从而得从而得(3421)=5=5.5逆序及逆序数逆序及逆序数 定义定义1 1 在一个级排列在一个级排列i1i2 in中,若一个较大的数排在一个较小数中,若一个较大的数排在一个较小数的前面,则称这两个数构成一个逆序的前面,则称这两个数构成一个逆序.一个排列中逆序的总数,称为一个排列中逆序的总数,称为这个排列的逆序数,记为这个排列的逆序数,记为(i1i2 in).下页线性代数下页结束返回奇排列与偶排列奇排列与偶排列逆序及逆序数逆序及逆序数 定义定义1 1 在一个级排列在一个级排列i1i2 in中,若一个较大的数排在一个较小数中,若一个较大的数排
8、在一个较小数的前面,则称这两个数构成一个逆序的前面,则称这两个数构成一个逆序.一个排列中逆序的总数,称为一个排列中逆序的总数,称为这个排列的逆序数,记为这个排列的逆序数,记为(i1i2 in).逆序数是奇数的排列,称为奇排列逆序数是奇数的排列,称为奇排列.逆序数是偶数或逆序数是偶数或0的排列,称为偶排列的排列,称为偶排列.如如 3421是奇排列,是奇排列,1234是偶排列是偶排列,因为因为(3421)=5=5.因为因为(1234)=0=0.下页线性代数下页结束返回 定义定义3 符号称为n阶行列式阶行列式,它表示代数和它表示代数和 其中和式中的排列其中和式中的排列 j1 j2 jn要取遍所有要取
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 行列式 定义 性质 计算
限制150内