三角形五心性质概念整理(超全)(共8页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《三角形五心性质概念整理(超全)(共8页).doc》由会员分享,可在线阅读,更多相关《三角形五心性质概念整理(超全)(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上重心1、重心到顶点的距离与重心到对边中点的距离之比为2:1。2、重心和三角形3个顶点组成的3个三角形面积相等。3、重心到三角形3个顶点距离的和最小。 证明方法:设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y) 则该点到三顶点距离平方和为:(x1-x)2+(y1-y)2+(x2-x)2+(y2-y)2+(x3-x)2+(y3-y)2=3x2-2x(x1+x2+x3)+3y2-2y(y1+y2+y3)+x12+x22+x32+y12+y22+y32=3x-1/3*(x1+x2+x3)2+3y-1/3*(y1+y2+y3)2+x1
2、2+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3()时上式取得最小值x12+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2最终得出结论。4、在中,重心的坐标是的,即其坐标为(X1+X2+X3)/3,(Y1+Y2+Y3)/3;空间:(X1+X2+X3)/3,:(Y1+Y2+Y3)/3,:(Z1+Z2+Z3)/35、三角形内到三边距离之积最大的点。6、在ABC中,若MA向量+MB向量+MC向量=0(向量) ,则M点为ABC的重心,
3、反之也成立。7、设ABC重心为G点,所在平面有一点O,则OG=1/3(向量OA+向量OB+向量OC)内心设ABC的内切圆为I(r),A、B、C的对边分别为a、b、c,p=(a+b+c)/21、三角形的内心到三边的距离相等,都等于内切圆半径r2、BIC=90+BAC/23、在RtABC中,A=90,三角形内切圆切BC于D,则SABC=BDCD4、点O是平面ABC上任意一点,点I是ABC内心的充要条件是:向量OI=a(向量OA)+b(向量OB)+c(向量OC)/(a+b+c)5、在ABC中,若三个顶点分别是A(x1,y1),B(x2,y2),C(x3,y3),那么ABC内心I的坐标是:(ax1/(
4、a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)6、(定理)ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI2=R2-2Rr7、ABC中:a,b,c分别为三边,S为三角形面积,则内切圆半径r=2S/(a+b+c)8、双曲线上任一支上一点与两交点组成的三角形的内心在实轴的射影为对应支的顶点。9、ABC中,内切圆分别与AB,BC,CA相切于P,Q,R,则AP=AR=(b+c-a)/2, BP =BQ =(a+c-b)/2, CR =CQ =(b+a-c)/2,r=(b+c-a)tan(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 心性 概念 整理
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内