线性规划问题在高考中的应用课件.ppt
《线性规划问题在高考中的应用课件.ppt》由会员分享,可在线阅读,更多相关《线性规划问题在高考中的应用课件.ppt(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线性规划是沟通几何知识与代数知识的重要桥梁,是数形结合的集中体现。线性规划问题已成为近几年高考的热点问题,在高考中多以选择题、填空题以及解答题中的小题出现,它往往与不等式、方程、函数等知识相联系。通过对近几年对高考试题研究整理如下:公式回顾公式回顾1、两点表示斜率、两点表示斜率2、两点距离公式、两点距离公式3、点到直线的距离公式、点到直线的距离公式例例.已知实数已知实数 x、y 满足下列条件满足下列条件 ,(1)若目标函数若目标函数 z=2x+y,求,求z的最大值与最小值的最大值与最小值题型一:求最值题型一:求最值xyo351例例.已知实数已知实数 x、y 满足下列条件满足下列条件 ,xyo
2、351题型二:变为斜率题型二:变为斜率学点四与解析几何中斜率、距离的联系学点四与解析几何中斜率、距离的联系 【分析】【分析】由于本题的目标函数不是一次函数,所以它由于本题的目标函数不是一次函数,所以它不是线性规划问题,但可以利用不是线性规划问题,但可以利用z z的几何意义,用类似于的几何意义,用类似于线性规划的图解法解问题线性规划的图解法解问题.变量变量x x,y y满足满足 设设z z=,求求z z的最大值与最的最大值与最小值小值.x x-4-4y y+30,+30,3 3x x+5+5y y-250,-250,x x1,1,【解析】【解析】由约束条件由约束条件 x x-4-4y y+30,
3、+30,3 3x x+5+5y y-250,-250,作出点(作出点(x x,y y)x x1,1,的可行域(如图的可行域(如图3-4-53-4-5).图图3-4-53-4-5 z z=,=,z z的值即是可行域中的点与的值即是可行域中的点与O O(0,00,0)点连线的斜率,)点连线的斜率,观察图形可知:观察图形可知:z zmaxmax=k kAOAO,z zminmin=k kBOBO.由由 解得解得A A ,k kAOAO=.由由 解得解得B B(5 5,2 2),),k kBOBO=.故故z zmaxmax=,z zminmin=.x x=1,=1,3 3x x+5+5y y-25=0
4、,-25=0,x x-4-4y y+3=0,+3=0,3 3x x+5+5y y-25=0-25=0,【评析评析】直接求直接求 的最值无从下手,解决这类问题的最值无从下手,解决这类问题的关键是利用图形的直观性,这就需要:第一,要准确作的关键是利用图形的直观性,这就需要:第一,要准确作出可行域;第二,要抓住目标函数出可行域;第二,要抓住目标函数z z=f f(x x,y y)中中z z的几何意的几何意义义.如如z z=中的中的z z的几何意义就是点的几何意义就是点A A(x x,y y)与原)与原点连线的斜率,当求与之相关的最值问题时,就要观察图点连线的斜率,当求与之相关的最值问题时,就要观察图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性规划 问题 高考 中的 应用 课件
限制150内