排列组合综合应用问题课件PPT.ppt
《排列组合综合应用问题课件PPT.ppt》由会员分享,可在线阅读,更多相关《排列组合综合应用问题课件PPT.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 引入:引入:前面我们已经学习和掌握了排列组合问题前面我们已经学习和掌握了排列组合问题的求解方法,下面我们要在复习、巩固已掌握的方的求解方法,下面我们要在复习、巩固已掌握的方法的基础上,学习和讨论排列、组合的综合问题。法的基础上,学习和讨论排列、组合的综合问题。和应用问题。和应用问题。问题:解决排列组合问题一般有哪些方法?应注问题:解决排列组合问题一般有哪些方法?应注意什么问题?意什么问题?解排列组合问题时,当问题分成互斥各类时,解排列组合问题时,当问题分成互斥各类时,根据加法原理,可用根据加法原理,可用分类法分类法;当问题考虑先后次序;当问题考虑先后次序时,根据乘法原理,可用时,根据乘法原理
2、,可用特殊特殊位置法、特殊元素法位置法、特殊元素法;上述两种称上述两种称“直接法直接法”,当问题的反面简单明了时,当问题的反面简单明了时,可通过求差排除法可通过求差排除法,采用采用“间接法间接法”;另外,排列中;另外,排列中“相邻相邻”问题可采用问题可采用捆绑法捆绑法;“分离分离”问题可用问题可用插插空法、定序问题倍缩法空法、定序问题倍缩法等。等。解排列组合问题,一定要做到解排列组合问题,一定要做到“不重不重”、“不漏不漏”。分为三组,一组分为三组,一组5人,一组人,一组4人,一组人,一组3人;人;分为甲、乙、丙三组,甲组分为甲、乙、丙三组,甲组5人,乙组人,乙组4人,丙组人,丙组3人;人;分
3、为甲、乙、丙三组,一组分为甲、乙、丙三组,一组5人,一组人,一组4人,一组人,一组3人;人;分为甲、乙、丙三组,每组分为甲、乙、丙三组,每组4人;人;分为三组,每组分为三组,每组4人。人。例例1:有有12 人。按照下列要求分配,求不同的分法种人。按照下列要求分配,求不同的分法种数。数。C125.C74.C33 C125.C74.C33 C125.C74.C33.A33C124.C84.C44分成三组,其中一组分成三组,其中一组2人,另外两组都是人,另外两组都是 5人。人。C122.C105.C55 A22 C124.C84.C44 A33一、分配问题一、分配问题 小结小结:练习练习1说明了非平
4、均分配、平均分配以及部分平说明了非平均分配、平均分配以及部分平均分配问题。均分配问题。1.非平均分配问题中,没有给出组名与给出组名是一样非平均分配问题中,没有给出组名与给出组名是一样的,可以直接分步求;给出了组名而没指明哪组是几个,的,可以直接分步求;给出了组名而没指明哪组是几个,可以在可以在没有给出组名(或给出组名但不指明各组多少个)没有给出组名(或给出组名但不指明各组多少个)种数的基础上种数的基础上乘以乘以组数的全排列数。组数的全排列数。2.平均分配问题中,平均分配问题中,给出组名的分步求;给出组名的分步求;若没给出组名的,若没给出组名的,一定要在给出组名的基础上一定要在给出组名的基础上除
5、以除以组数的全排列数。组数的全排列数。3.部分平均分配问题中,先考虑不平均分配,剩下的就是部分平均分配问题中,先考虑不平均分配,剩下的就是 平均分配。这样分配问题就解决了。平均分配。这样分配问题就解决了。结论结论:给出组名:给出组名(非平均中未指明非平均中未指明各组个数)的要在未给出组名的种各组个数)的要在未给出组名的种数的基础上,乘以组数的阶乘。数的基础上,乘以组数的阶乘。例例2:某乒乓球队有某乒乓球队有8男男7女共女共15名队员,现进行名队员,现进行混合双打训练,两边都必须要混合双打训练,两边都必须要1男男1女,共有多少女,共有多少种不同的搭配方法。种不同的搭配方法。分析:每一种搭配都需要
6、分析:每一种搭配都需要2男男2女,所以先要选出女,所以先要选出2男男2女,有女,有C82.C72种;种;然后考虑然后考虑2男男2女搭配女搭配。先排男队员、再排女队员,所以总的先排男队员、再排女队员,所以总的搭配方法有搭配方法有 种。种。二、二、搭搭 配配 问问 题题先组后排先组后排例例3.高一要从全年级高一要从全年级10名独唱选手中选出名独唱选手中选出6名在歌咏会上表演,出场安排甲,乙两人都名在歌咏会上表演,出场安排甲,乙两人都不唱中间两位的安排方法有多少种?不唱中间两位的安排方法有多少种?三三.有条件限制的排列问题有条件限制的排列问题 例例4:已知集合已知集合A=1,2,3,4,5,6,7,
7、8,9求含有求含有5个元素,且其中至少有两个是偶数的子集的个元素,且其中至少有两个是偶数的子集的个数。个数。四、有条件限制的组合问题:四、有条件限制的组合问题:解法解法1:5个元素中至少有两个是偶数可分成三类:个元素中至少有两个是偶数可分成三类:2个偶数,个偶数,3个奇数;个奇数;3个偶数,个偶数,2个奇数;个奇数;4个偶数,个偶数,1个奇数。所以共有子集个数为个奇数。所以共有子集个数为 C42.C53+C43.C52+C44.C51=105 解法解法2:从反面考虑,全部子集个数为从反面考虑,全部子集个数为C95,而不符合条件,而不符合条件的有两类:的有两类:5 个都是奇数;个都是奇数;4个奇
8、数,个奇数,1个偶数。所以个偶数。所以共有子集个数为共有子集个数为C95-C55-C54.C41=105下面解法错在哪里下面解法错在哪里?例例4:已知集合已知集合A=1,2,3,4,5,6,7,8,9求含有求含有5个元素,且其中至少有两个是偶数的子集的个数。个元素,且其中至少有两个是偶数的子集的个数。至少有两个偶数,可先由至少有两个偶数,可先由4个偶数中取个偶数中取2个偶数,个偶数,然后再由剩下的然后再由剩下的7个数中选个数中选3个组成个组成5个元素集合且满足至个元素集合且满足至少有少有2个是偶数。成以共有子集个是偶数。成以共有子集C42.C73=210(个个)用用“具体排具体排”来看一看是否
9、重复,如来看一看是否重复,如C42中的一种选法是:选中的一种选法是:选4个偶数中的个偶数中的2,4,又,又C73中选剩下的中选剩下的3个元素不个元素不6,1,3组成集组成集合合2,4,6,1,3,;再看另一种选法:由;再看另一种选法:由C42 中选中选4个偶数中个偶数中的的4,6,又,又C73中选剩下的中选剩下的3个元素选个元素选2,1,3组成集合组成集合4,6,2,1,3。显然这是两个相同和子集,所以重复了。重复的原。显然这是两个相同和子集,所以重复了。重复的原因是分类不独立。因是分类不独立。五、排列组合混合问题:五、排列组合混合问题:例例5:从从6名男同学和名男同学和4名女同学中,选出名女
10、同学中,选出3名男同名男同学和学和2名女同学分别承担名女同学分别承担A,B,C,D,E5项工作。项工作。一共有多少种分配方案。一共有多少种分配方案。解解1:分三步完成,分三步完成,1.选选3名男同学有名男同学有C63种,种,2.选选2名女同学有名女同学有C42种,种,3.对选出的对选出的5人分配人分配5种不同的种不同的工作有工作有A55种,根据乘法原理种,根据乘法原理C63.C42.A55=14400(种种).解解2:把把工作当作元素,同学看作位置工作当作元素,同学看作位置,1.从从5种工作中任选种工作中任选3种种(组合问题)分给(组合问题)分给6个男同学中的个男同学中的3人(排列问题)有人(
11、排列问题)有C53.A63种种,第第二步二步,将余下的将余下的2个工作分给个工作分给4个女同学中的个女同学中的2人有人有A42种种.根据乘法根据乘法原理共有原理共有C53.A63.A42=14400(种种).亦可先分配给女同学工作亦可先分配给女同学工作,再给男同学分配工作再给男同学分配工作,分配方案有分配方案有C52.A42.A63=14400(种种).例例例例6.6.九张卡片分别写着数字九张卡片分别写着数字九张卡片分别写着数字九张卡片分别写着数字0 0,1 1,2 2,8 8,从中取出,从中取出,从中取出,从中取出三张排成一排组成一个三位数,如果三张排成一排组成一个三位数,如果三张排成一排组
12、成一个三位数,如果三张排成一排组成一个三位数,如果6 6可以当作可以当作可以当作可以当作9 9使用,使用,使用,使用,问可以组成多少个三位数?问可以组成多少个三位数?问可以组成多少个三位数?问可以组成多少个三位数?解:解:解:解:可以分为两类情况:可以分为两类情况:可以分为两类情况:可以分为两类情况:若取出若取出若取出若取出6 6,则有,则有,则有,则有 种方法;种方法;种方法;种方法;若不取若不取若不取若不取6 6,则有,则有,则有,则有 种方法,种方法,种方法,种方法,根据分类计数原理,一共有根据分类计数原理,一共有根据分类计数原理,一共有根据分类计数原理,一共有 +602602种方法种方
13、法种方法种方法 六、化归策略六、化归策略 例例7、25人排成人排成55方阵方阵,现从中选现从中选3人人,要求要求3人不在人不在 同同一行也不在同一列一行也不在同一列,不同的选法有多少种?不同的选法有多少种?变式变式7:某城市的街区由某城市的街区由12个全等的矩形区组成其个全等的矩形区组成其中实线表示马路中实线表示马路,从从A走到走到B的最短路径有多少种的最短路径有多少种?七、错位排列七、错位排列例例9.编号为编号为1至至6的的6个小球放入编号为个小球放入编号为1至至6的的6个个盒子里盒子里,每个盒子放一个小球每个盒子放一个小球,其中恰有其中恰有2个小球与盒个小球与盒子的编号相同的放法有子的编号
14、相同的放法有_种种.解:解:选取编号相同的两组球和盒子的方法有选取编号相同的两组球和盒子的方法有 种种,其余其余4组球与盒子需错位排列有组球与盒子需错位排列有9种放法种放法.故所求方法有故所求方法有 159135种种.练习练习1:4位同学各写了一张明信片,然后统一收位同学各写了一张明信片,然后统一收齐放到盒子里,每位同学再去抽取一张,问他们齐放到盒子里,每位同学再去抽取一张,问他们均不拿到自己的有多少种拿法?均不拿到自己的有多少种拿法?练习练习2 用三种不同的颜色填涂如用三种不同的颜色填涂如图图33方格中的方格中的9个区域,要求每行个区域,要求每行每列的三个区域都不同颜色,则不同每列的三个区域
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 综合 应用 问题 课件 PPT
限制150内