甘肃省民勤县第六中学八年级数学上册13.4课题学习最短路径问题教学课件新版新人教版.ppt
《甘肃省民勤县第六中学八年级数学上册13.4课题学习最短路径问题教学课件新版新人教版.ppt》由会员分享,可在线阅读,更多相关《甘肃省民勤县第六中学八年级数学上册13.4课题学习最短路径问题教学课件新版新人教版.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、13.4 课题学习课题学习 最短路径问题最短路径问题如图所示:从如图所示:从A A地到地到B B地有三条路可供地有三条路可供选择,你会选择哪条路距离最短?你选择,你会选择哪条路距离最短?你的理由是什么?的理由是什么?两点之间线段最短两点之间线段最短如图,要在燃气管道如图,要在燃气管道L L上修建一个泵站,分别上修建一个泵站,分别向向A A、B B两镇供气,泵站修在管道的什么地两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?方,可使所用的输气管线最短?P所以泵站建在点所以泵站建在点P P可使输气管线最短可使输气管线最短问题问题1相传,古希腊亚历山大里亚城里有一位久相传,古希腊亚历山大里
2、亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:海伦,求教一个百思不得其解的问题:从图中的从图中的A 地出发,到一条笔直的河边地出发,到一条笔直的河边l 饮马,然饮马,然后到后到B 地到河边什么地方饮马可使他所走的路线全程地到河边什么地方饮马可使他所走的路线全程最短?最短?探索新知探索新知BAl精通数学、物理学的海伦稍加思索,利用轴对称的精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题这个问题后来被称为知识回答了这个问题这个问题后来被称为“将军饮马将军饮马 问题问题”你能将这个问题抽象为
3、数学问题吗?你能将这个问题抽象为数学问题吗?探索新知探索新知BAl追问追问1这是一个实际问题,你打算首先做什么?这是一个实际问题,你打算首先做什么?将将A,B 两地抽象为两个点,将河两地抽象为两个点,将河l 抽象为一条直抽象为一条直 线线 探索新知探索新知BAl(1)从)从A 地出发,到河边地出发,到河边l 饮马,然后到饮马,然后到B 地;地;(2)在河边饮马的地点有无穷多处,把这些地点与)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从连接起来的两条线段的长度之和,就是从A 地地 到饮马地点,再回到到饮马地点,再回到B 地的路程之和;地的路程之和;探索新知
4、探索新知追问追问2你能用自己的语言说明这个问题的意思,你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?并把它抽象为数学问题吗?追问追问1对于问题对于问题2,如何,如何将点将点B“移移”到到l 的另一侧的另一侧B处,满足直线处,满足直线l 上的任意一点上的任意一点C,都保持,都保持CB 与与CB的长度的长度相等?相等?探索新知探索新知问题问题2 如图,点如图,点A,B 在直线在直线l 的同侧,点的同侧,点C 是直是直 线上的一个动点,当点线上的一个动点,当点C 在在l 的什么位置时,的什么位置时,AC 与与CB 的和最小?的和最小?BlA追问追问2你能利用轴对称的你能利用轴对称的有关
5、知识,找到上问中符合条有关知识,找到上问中符合条件的点件的点B吗?吗?探索新知探索新知问题问题2 如图,点如图,点A,B 在直线在直线l 的同侧,点的同侧,点C 是直是直线上的一个动点,当点线上的一个动点,当点C 在在l 的什么位置时,的什么位置时,AC 与与CB的和最小?的和最小?BlA作法:作法:(1)作点)作点B 关于直线关于直线l 的对称的对称 点点B;(2)连接)连接AB,与直线,与直线l 相交相交 于点于点C 则点则点C 即为所求即为所求 探索新知探索新知问题问题2 如图,点如图,点A,B 在直线在直线l 的同侧,点的同侧,点C 是直是直线上的一个动点,当点线上的一个动点,当点C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 甘肃省 民勤县 第六 中学 八年 级数 上册 13.4 课题 学习 路径 问题 教学 课件 新版 新人
限制150内