教育专题:高考数学_解排列组合问题的常用方法课件.ppt
《教育专题:高考数学_解排列组合问题的常用方法课件.ppt》由会员分享,可在线阅读,更多相关《教育专题:高考数学_解排列组合问题的常用方法课件.ppt(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、排列组合应用题解法综述 计数问题中排列组合问题是最常见的,计数问题中排列组合问题是最常见的,由于其解法往往是构造性的由于其解法往往是构造性的,因此方法灵活因此方法灵活多样多样,不同解法导致问题难易变化也较大,不同解法导致问题难易变化也较大,而且解题过程出现而且解题过程出现“重复重复”和和“遗漏遗漏”的错的错误较难自检发现。因而对这类问题归纳总结,误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。并把握一些常见解题模型是必要的。基本原理组合排列排列数公式组合数公式组合数性质应用问题 知识结构网络图:知识结构网络图:名称内容分类(加法)原理分类(加法)原理分步(乘法)原理分步
2、(乘法)原理定定 义义相同点相同点不同点不同点两个原理的区别与联系:两个原理的区别与联系:做一件事或完成一项工作的方法数做一件事或完成一项工作的方法数直接(直接(分类分类)完成)完成间接(间接(分步骤分步骤)完成)完成做一件事,完成它可以有做一件事,完成它可以有n类办法,类办法,第一类办法中有第一类办法中有m1种不同的方法,种不同的方法,第二类办法中有第二类办法中有m2种不同的方法种不同的方法,第第n类办法中有类办法中有mn种不同的方法,种不同的方法,那么完成这件事共有那么完成这件事共有 N=m1+m2+m3+mn 种不同的方法种不同的方法做一件事,完成它可以有做一件事,完成它可以有n个步骤,
3、个步骤,做第一步中有做第一步中有m1种不同的方法,种不同的方法,做第二步中有做第二步中有m2种不同的方法种不同的方法,做第做第n步中有步中有mn种不同的方法,种不同的方法,那么完成这件事共有那么完成这件事共有 N=m1m2m3mn 种不同的方法种不同的方法.分步计数原理分步计数原理各步相互依存各步相互依存,每步中的方法,每步中的方法完成事件的完成事件的一个阶段一个阶段,不能完成整个事件不能完成整个事件分类计数原理分类计数原理分步计数原理区别分步计数原理区别分类计数原理分类计数原理方法相互独立方法相互独立,任何一种方法,任何一种方法都可以都可以独立地完成这件事独立地完成这件事。1.1.排列和组合
4、的区别和联系:排列和组合的区别和联系:名名 称称排排 列列组组 合合定义定义种数种数符号符号计算计算公式公式关系关系性质性质 ,从从n个不同元素中取出个不同元素中取出m个元个元素,素,按一定的顺序按一定的顺序排成一列排成一列从从n个不同元素中取出个不同元素中取出m个元个元素,素,把它并成把它并成一组一组所有排列的的个数所有排列的的个数所有组合的个数所有组合的个数2.解决排列组合综合性问题的一般过程如下解决排列组合综合性问题的一般过程如下:1.1.认真审题弄清要做什么事认真审题弄清要做什么事2.2.怎样做才能完成所要做的事怎样做才能完成所要做的事,即采取分步还即采取分步还 是分类是分类,或是分步
5、与分类同时进行或是分步与分类同时进行,确定分多确定分多 少步及多少类。少步及多少类。3.3.确定每一步或每一类是排列问题确定每一步或每一类是排列问题(有序有序)还是还是 组合组合(无序无序)问题问题,元素总数是多少及取出多元素总数是多少及取出多 少个元素少个元素.解决排列组合综合性问题,往往类与步交解决排列组合综合性问题,往往类与步交 叉,因此必须掌握一些常用的解题策略叉,因此必须掌握一些常用的解题策略判断下列问题是组合问题还是排列问题判断下列问题是组合问题还是排列问题?(1)设集合设集合A=a,b,c,d,e,则集合则集合A的含有的含有3个元素的子集有多少个个元素的子集有多少个?(2)某铁路
6、线上有某铁路线上有5个车站,则这条铁路线上个车站,则这条铁路线上共需准备多少种车票共需准备多少种车票?有多少种不同的火车票价?有多少种不同的火车票价?组合问题组合问题排列问题排列问题(3)10名同学分成人数相同的数学和名同学分成人数相同的数学和英语两个学习小组,共有多少种分法英语两个学习小组,共有多少种分法?组合问题组合问题(4)10人聚会,见面后每两人之间要人聚会,见面后每两人之间要握手相互问候,共需握手多少次握手相互问候,共需握手多少次?组合问题组合问题(5)从从4个风景点中选出个风景点中选出2个安排游览个安排游览,有多少种不同的方法有多少种不同的方法?组合问题组合问题(6)从从4个风景点
7、中选出个风景点中选出2个个,并确定这并确定这2个风景个风景点的游览顺序点的游览顺序,有多少种不同的方法有多少种不同的方法?排列问题排列问题组合问题组合问题3.合理分类和准确分步合理分类和准确分步 解排列(或)组合问题,应按元素解排列(或)组合问题,应按元素的性质进行分类,分类标准明确,不重的性质进行分类,分类标准明确,不重不漏;不漏;按按事情的发生的连续过程分步,事情的发生的连续过程分步,做到分步层次清楚做到分步层次清楚.分析:分析:先安排甲,按照要求对其进行分类,分两类:先安排甲,按照要求对其进行分类,分两类:根据分步及分类计数原理,不同的站法共有根据分步及分类计数原理,不同的站法共有例:例
8、:6个同学和个同学和2个老师排成一排照相,个老师排成一排照相,2个老个老师站中间,学生甲不站排头,学生乙不站排尾,师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?共有多少种不同的排法?1)若甲在排尾上,则剩下的若甲在排尾上,则剩下的5人可自由安排,有人可自由安排,有 种方法种方法.2)若甲在第若甲在第2、3、6、7位,则位,则排尾的排法有排尾的排法有 种,种,1位的排法位的排法有有 种种,第第2、3、6、7位的排法有位的排法有 种种,根据分步计数,根据分步计数原理,不同的站法有原理,不同的站法有 种。种。3)再安排老师,有再安排老师,有2种方法。种方法。(1)0,1,2,3,4
9、,5可组成多少个无重复数字可组成多少个无重复数字且能被五整除的五位数?且能被五整除的五位数?练练 习习 题题分类:个位数字为分类:个位数字为5或或0:个位数为个位数为0:个位数为个位数为5:(2)0,1,2,3,4,5可组成多少个无重复数可组成多少个无重复数字且大于字且大于31250的五位数?的五位数?分类:分类:引申引申1:31250是由是由0,1,2,3,4,5组成的无重组成的无重复数字的五位数中从小到大第几个数?复数字的五位数中从小到大第几个数?方法一:(排除法)方法一:(排除法)方法二:(直接法)方法二:(直接法)引申引申2:由:由0,1,2,3,4,5组成的无重复数字的组成的无重复数
10、字的五位数中大于五位数中大于31250,小于,小于50124的数共有多少个?的数共有多少个?(3)有不同的数学书)有不同的数学书7本,语文书本,语文书5本,英语书本,英语书4本,由其中取出不是本,由其中取出不是同一学科的书同一学科的书2本,共有多少种不本,共有多少种不同的取法?同的取法?(75+74+54=83)回目录回目录解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。基本方法基本方法(一一)特殊元素和特殊位置问题特殊元素和特殊位置问题特殊元素和特殊位置优先策略特殊元素和特殊位置优先
11、策略例例1.由由0,1,2,3,4,5可以组成多少个没有重复数字可以组成多少个没有重复数字 五位奇数五位奇数.解解:由于末位和首位有特殊要求由于末位和首位有特殊要求,应该优先安应该优先安 排排,以免不合要求的元素占了这两个位置以免不合要求的元素占了这两个位置先排末位共有先排末位共有_ 然后排首位共有然后排首位共有_最后排其它位置共有最后排其它位置共有_由分步计数原理得由分步计数原理得=288位置分析法和元素分析法是解决排列组合问位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法题最常用也是最基本的方法,若以元素分析为若以元素分析为主主,需先安排特殊元素需先安排特殊元素,再处理其它元
12、素再处理其它元素.若以若以位置分析为主位置分析为主,需先满足特殊位置的要求需先满足特殊位置的要求,再再处理其它位置。若有多个约束条件,往往是处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件考虑一个约束条件的同时还要兼顾其它条件 例例2 用用0,1,2,3,4这五个数,组成没有重复数字这五个数,组成没有重复数字的三位数,其中偶数共有(的三位数,其中偶数共有()A.24 B.30 C.40 D.60 分析:由于该三位数是偶数,所以末尾数字必须是偶数,分析:由于该三位数是偶数,所以末尾数字必须是偶数,又因为又因为0不能排首位,故不能排首位,故0就是其中的就是其中的“特殊特
13、殊”元素,应优元素,应优先安排。按先安排。按0排在末尾和不排在末尾分为两类;排在末尾和不排在末尾分为两类;1)0排在末尾时,有排在末尾时,有 个;个;2)0不排在末尾时,先用偶数排个位,再排百位,最后排不排在末尾时,先用偶数排个位,再排百位,最后排十位有十位有 个;个;3)由分类计数原理,共有偶数由分类计数原理,共有偶数 30 个个.B小结:小结:1 1、“在在”与与“不在不在”可以相互转化。可以相互转化。解决某些元素在某些位置上用解决某些元素在某些位置上用“定位法定位法”,解,解决某些元素不在某些位置上一般用决某些元素不在某些位置上一般用“间接法间接法”或转化为或转化为“在在”的问题求解。的
14、问题求解。2 2、排列组合应用题极易出现、排列组合应用题极易出现“重重”、“漏漏”现象,而重现象,而重”、“漏漏”错误常发生在该不该错误常发生在该不该分类、有无次序的问题上。为了更好地防分类、有无次序的问题上。为了更好地防“重重”堵堵“漏漏”,在做题时需认真分析自己做,在做题时需认真分析自己做题思路,也可改变解题角度,利用一题多解题思路,也可改变解题角度,利用一题多解核对答案核对答案基本方法基本方法(二二)相邻相间问题相邻相间问题1.1.相邻元素捆绑策略相邻元素捆绑策略例:例:7 7人站成一排人站成一排,其中甲乙相邻且丙丁相其中甲乙相邻且丙丁相 邻邻,共有多少种不同的排法共有多少种不同的排法.
15、甲甲乙乙丙丙 丁丁由分步计数原理可得共有由分步计数原理可得共有种不同的排法种不同的排法=480解:可先将甲乙两元素捆绑成整体并看成解:可先将甲乙两元素捆绑成整体并看成 一个复合元素,同时丙丁也看成一个一个复合元素,同时丙丁也看成一个 复合元素,再与其它元素进行排列,复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。同时对相邻元素内部进行自排。要求某几个元素必须排在一起的问题要求某几个元素必须排在一起的问题要求某几个元素必须排在一起的问题要求某几个元素必须排在一起的问题,可以用可以用可以用可以用捆绑法来解决问题捆绑法来解决问题捆绑法来解决问题捆绑法来解决问题.即将需要相邻的元素合并即将
16、需要相邻的元素合并即将需要相邻的元素合并即将需要相邻的元素合并为一个元素为一个元素为一个元素为一个元素,再与其它元素一起作排列再与其它元素一起作排列再与其它元素一起作排列再与其它元素一起作排列,同时同时同时同时要注意合并元素内部也必须排列要注意合并元素内部也必须排列要注意合并元素内部也必须排列要注意合并元素内部也必须排列.2.2.2.2.不相邻问题插空策略不相邻问题插空策略不相邻问题插空策略不相邻问题插空策略例例:例例:一一个个晚晚会会的的节节目目有有一一个个晚晚会会的的节节目目有有4 4 4 4个个舞舞蹈蹈个个舞舞蹈蹈,2 2,2 2个个相相声声个个相相声声,3 3,3 3个个个个 独独唱唱
17、独独唱唱,舞舞蹈蹈节节目目不不能能连连续续出出场场舞舞蹈蹈节节目目不不能能连连续续出出场场,则则节节目目的的出出则则节节目目的的出出 场场顺顺序序有有多多少少种种?场场顺顺序序有有多多少少种种?解解解解:分两步进行第一步排分两步进行第一步排分两步进行第一步排分两步进行第一步排2 2 2 2个相声和个相声和个相声和个相声和3 3 3 3个独唱共个独唱共个独唱共个独唱共 有有有有 种,种,种,种,第二步将第二步将4 4舞蹈插入第一步排舞蹈插入第一步排好的好的6 6个元素中间包含首尾两个空位共有个元素中间包含首尾两个空位共有种种 不同的方法不同的方法 由分步计数原理,节目的不同顺序共有 种相相相相独
18、独独独独独元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端插入中间和两端插入中间和两端插入中间和两端(1)三个男生,四个女生排成一排,男生、女生)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法?各站一起,有几种不同方法?(2)三个男生,四个女生排成一排,三个男生,四个女生排成一排,男生之间、男生之间、女生之间不相邻,有几种不同排法?女生之间不相邻,有几种不同排法?捆绑法:捆绑法:插空
19、法:插空法:(3)用、用、组成没有重复数字的八位数,要求与相邻,与组成没有重复数字的八位数,要求与相邻,与相邻,与相邻,而与不相邻,这样的八位数共相邻,与相邻,而与不相邻,这样的八位数共有有_个(用数字作答)个(用数字作答)练练 习习(3)(2005 辽宁辽宁)用、用、组成没有重复数字的八位数,要求与相邻,组成没有重复数字的八位数,要求与相邻,与相邻,与相邻,而与不相邻,与相邻,与相邻,而与不相邻,这样的八位数共有这样的八位数共有_个(用数字作答)个(用数字作答)将与,与,与捆绑在一起排成一列将与,与,与捆绑在一起排成一列有有 种,再将、插入种,再将、插入4个空位中的两个个空位中的两个有有 种
20、,故有种,故有 种种(4 4)七人排成一排,甲、乙两人必须相邻,且甲、)七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有(乙都不与丙相邻,则不同的排法有()种)种960960种种 (B B)840840种种 (C C)720720种种 (D D)600600种种解:解:另解:另解:(5 5)某人射击)某人射击8 8枪,命中枪,命中4 4枪,枪,4 4枪命中枪命中恰好有恰好有3 3枪连在一起的情形的不同种数枪连在一起的情形的不同种数为为()20小结:小结:以元素相邻为附加条件的以元素相邻为附加条件的应把相邻元素视为一个整体,即应把相邻元素视为一个整体,即采用采用“捆绑法捆绑
21、法”;以某些元素不;以某些元素不能相邻为附加条件的能相邻为附加条件的,可采用可采用“插空法插空法”。“插空插空”有同时有同时“插插空空”和有逐一和有逐一“插空插空”,并要注并要注意条件的限定意条件的限定.回目录回目录定序问题倍缩、空位、插入策略定序问题倍缩、空位、插入策略基本方法基本方法(三三)定序问题定序问题定序问题倍缩、空位、插入策略定序问题倍缩、空位、插入策略例:例:7 7人排队人排队,其中甲乙丙其中甲乙丙3 3人顺序一定共有多人顺序一定共有多 少不同的排法少不同的排法解:(倍缩法倍缩法)对于某几个元素顺序一定的排列对于某几个元素顺序一定的排列问题问题,可先把这几个元素与其他元素一起可先
22、把这几个元素与其他元素一起进行排列进行排列,然后用总排列数除以然后用总排列数除以这几个元这几个元素之间的全排列数素之间的全排列数,则共有不同排法种数则共有不同排法种数是:是:(空位法空位法)设想有)设想有7 7把椅子让除甲乙丙以外把椅子让除甲乙丙以外的四人就坐共有的四人就坐共有 种方法,其余的三个种方法,其余的三个位置甲乙丙共有位置甲乙丙共有 种坐法,则共有种坐法,则共有 种种 方法方法 1思考思考:可以先让甲乙丙就坐吗可以先让甲乙丙就坐吗?(插入法插入法)先排甲乙丙三个人先排甲乙丙三个人,共有共有1 1种排法种排法,再再 把其余把其余4 4四人四人依次依次插入共有插入共有 方法方法4*5*6
23、*74*5*6*7定序问题可以用倍缩法,还可转化为占位插定序问题可以用倍缩法,还可转化为占位插空模型处理空模型处理练习题1010人身高各不相等人身高各不相等,排成前后排,每排排成前后排,每排5 5人人,要要求从左至右身高逐渐增加,共有多少排法?求从左至右身高逐渐增加,共有多少排法?练习:练习:期中安排考试科目期中安排考试科目9 9门门,语文要在数学之前考语文要在数学之前考,有多少种不同的安排顺序有多少种不同的安排顺序?结论结论 对等法对等法:在有些题目中在有些题目中,它的限制条件的肯定与它的限制条件的肯定与否定是对等的否定是对等的,各占全体的二分之一各占全体的二分之一.在求解中只要求在求解中只
24、要求出全体出全体,就可以得到所求就可以得到所求.基本方法基本方法(四四)分房问题分房问题又名:住店法,又名:住店法,重排问题求幂策略重排问题求幂策略例:例:七名学生争夺五项冠军,每项冠军只能由一七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有(人获得,获得冠军的可能的种数有()A.B.C D.分析:因同一学生可以同时夺得分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,项冠军,故学生可重复排列,将七名学生看作将七名学生看作7家家“店店”,五项冠军看作,五项冠军看作5名名“客客”,每个,每个“客客”有有7种住宿法,由乘法原理得种住宿法,由乘法原理得 种。种。注:对此类问
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 高考 数学 排列组合 问题 常用 方法 课件
限制150内