教育专题:用待定系数法求二次函数的解析式1.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《教育专题:用待定系数法求二次函数的解析式1.ppt》由会员分享,可在线阅读,更多相关《教育专题:用待定系数法求二次函数的解析式1.ppt(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数的图像与性质二次函数的图像与性质 说说 一一 说说y y3x3x2 2y yx x2 22x2x1 1说出下列函数的开口方向、对称轴和顶点坐标说出下列函数的开口方向、对称轴和顶点坐标:y=-2x2+3y=-4(x+3)2y=(x-2)2+121温温 故故 而而 知知 新新二次函数解析式有哪几种表达式?二次函数解析式有哪几种表达式?一般式:一般式:yax2+bx+c(a0)顶点式:顶点式:ya(x-h)2+k (a0)特殊形式特殊形式 交点式:交点式:ya(x-x1)(x-x2)(a0)想一想想一想有一个抛物线形的立交桥拱,这个桥拱有一个抛物线形的立交桥拱,这个桥拱的最大高度为的最大高度
2、为16m16m,跨度为,跨度为40m40m施工前施工前要先制造建筑模板要先制造建筑模板,怎样画出模板的轮廓怎样画出模板的轮廓线呢线呢?分析分析:通常要先建立适当的直角坐标系通常要先建立适当的直角坐标系,再再写出函数关系式写出函数关系式,然后再根据关系式进行计算然后再根据关系式进行计算,放样画图放样画图.思考:思考:如果要求二次函数解析式如果要求二次函数解析式y yaxax2 2bxbxc(a0)c(a0)中的中的a a、b b、c c,至少需要几个点的坐标,至少需要几个点的坐标?猜一猜一 猜猜已知抛物线已知抛物线yax2bxc(a0)与与x轴交于轴交于A(-1,0),),B(3,0),并且过点
3、,并且过点C(0,-3),求抛物线的解析式?求抛物线的解析式?例题选讲例题选讲解:解:设所求的二次函数为设所求的二次函数为 yax2bxc由条件得:由条件得:0=a-b+c0=9a+3b+c-3=c得:得:a1 b=-2 c=-3故所求的抛物线解析式为故所求的抛物线解析式为 y=x22x3一般式:一般式:y=ax2+bx+c交点式:交点式:y=a(x-x1)(x-x2)顶点式:顶点式:y=a(x-h)2+k例例1已知抛物线已知抛物线yax2bxc(a0)与与x轴交于轴交于A(-1,0),),B(3,0),并且过点,并且过点C(0,-3),求抛物线的解析式?求抛物线的解析式?例题选讲例题选讲解:
4、解:设所求的二次函数为设所求的二次函数为y=a(x1)(x3)由条件得:由条件得:点点C(0,-3)在抛物线上在抛物线上所以所以:a(01)(03)3得:得:a1故所求的抛物线解析式为故所求的抛物线解析式为 y=(x1)(x3)即:即:y=x22x3一般式:一般式:y=ax2+bx+c交点式:交点式:y=a(x-x1)(x-x2)顶点式:顶点式:y=a(x-h)2+k例例1一般式:一般式:y=ax2+bx+c交点式:交点式:y=a(x-x1)(x-x2)顶点式:顶点式:y=a(x-h)2+k例例2 已知抛物线的顶点在已知抛物线的顶点在(3,-2),且与且与x轴两交点轴两交点的距离为的距离为4,
5、求此二次函数的解析式求此二次函数的解析式.解:解:设函数关系式设函数关系式 y=a(x-3)2-2例题选讲例题选讲抛物线与抛物线与x轴两交点距离为轴两交点距离为4,对称轴为对称轴为x=3过点过点(5,0)或或(1,0)把把(1,0)代入得代入得,4a=2a=21y=(x-3)2-2211、已知二次函数的图像过点、已知二次函数的图像过点(0,0),(1,3),(2,-7)三点,则该二次函数关系式为三点,则该二次函数关系式为_。2、若二次函数的图像有最高点为、若二次函数的图像有最高点为(1,6),且经过点,且经过点(2,8),则此二次函数的关系式),则此二次函数的关系式_3、若二次函数的图像与、若
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 待定系数法 二次 函数 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内