医学影像设备学第一章医学影像设备学概论课件.ppt
《医学影像设备学第一章医学影像设备学概论课件.ppt》由会员分享,可在线阅读,更多相关《医学影像设备学第一章医学影像设备学概论课件.ppt(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、医学影像设备学教学课件韩丰谈 主编第一章 医学影像设备学概论l第一节第一节 医学影像设备的发展简史医学影像设备的发展简史 l第二节第二节 医学影像设备的分类医学影像设备的分类 第一节第一节 医学影像设备的发展简史医学影像设备的发展简史l 1895年11月8日,德国物理学家伦琴(Withelm Conrad Roentgen,18451923)在做真空管高压放电实验时,发现了一种肉眼看不见、但具有很强的穿透本领、能使某些物质发出荧光和使胶片感光的新型射线,即X射线,简称为X线。l 1896年,德国西门子公司研制出世界上第一只X线管。20世纪1020年代,出现了常规X线机。其后,由于X线管、高压变
2、压器和相关的仪器、设备以及人工对比剂的不断开发利用,尤其是体层装置、影像增强器、连续摄影、快速换片机、高压注射器、电视、电影和录像记录系统的应用,到20世纪60年代中、末期,已形成了较完整的学科体系,称为影像设备学。l 1972年,英国工程师汉斯菲尔德(G.N.Hounsfield)首次研制成功世界上第一台用于颅脑的X线计算机体层摄影(x-ray computed tomography,X-CT)设备,简称为X-CT设备,或CT设备。l CT设备是横断面体层,无前后影像重叠,不受层面上下组织的干扰;同时由于密度分辨力显著提高,能分辨出0.1%0.5%X 线衰减系数的差异,比传统的X线检查高10
3、20倍;还能以数字形式(CT值)作定量分析。l近30年来,CT设备的更新速度极快,扫描时间由最初的几分钟向亚秒级发展,图像快速重建时间最快的已达0.75s(512512矩阵),空间分辨力也提高到0.1mm。宽探测器多层螺旋CT设备得到了广泛的普及,功能有了进一步的扩展。大孔径CT设备可兼顾日常应用与肿瘤病人定位,组合型CT设备可在完成CT检查后直接进行正电子发射型计算机体层(positive emission computed tomography,PET)检查,使CT的形态学信息与PET的功能性信息通过工作站准确融合,可以更准确地完成定性与定量的诊断。l 平板探测器CT设备目前尚在开发阶段,
4、一旦技术成熟,从机器设计、信息模式、成像速度、射线剂量到运行成本都会有根本性的改变,将会引起CT设备的又一次革命。l 20世纪80年代初用于临床的磁共振成像(magnetic resonance imaging,MRI)设备,简称为MRI设备。它是一种新的非电离辐射式医学成像设备。MRI设备的密度分辨力高,通过调整梯度磁场的方向和方式,可直接摄取横、冠、矢状层面和斜位等不同体位的体层图像,这是它优于CT设备的特点之一。迄今,MRI设备已广泛用于全身各系统,其中以中枢神经、心血管系统、肢体关节和盆腔等效果最好。l 中场超导(0.7T)开放型MRI设备进一步普及,它便于开展介入操作和检查中监护病人
5、,克服了幽闭恐惧病人和不合作病人应用MRI检查的限制。双梯度场技术可在较小的范围内达到更高的梯度场强,有利于完成各种高级成像技术,如功能成像、弥散成像等。降噪措施和成像专用线圈也都有了较大的进步,如功能成像线圈和肢体血管成像线圈等。腹部诊断效果已接近和达到CT设备水平,脑影像的分辨力在常规扫描时间下提高了数千倍,而显微成像的分辨力达到5010m,现已成为医学影像诊断设备中最重要的组成部分。l 生 物 体 磁 共 振 波 谱 分 析(magnetic resonance spectroscopy,MRS)具有研究机体物质代谢的功能和潜力,今后如能实现MRI设备与MRS结合的临床应用,将会引起医学
6、诊断学上一个新的突破。l 数字减影血管造影(digital subtraction angiography,DSA)、计算机X线摄影(computed radiography,CR)和数字摄影(digital radiography,DR)是20世纪80年代、90年代开发的数字X线机。前者具有少创、实时成像、对比分辨力高、安全、简便等特点,目前,正向快速旋转三维成像实时减影方向发展,从而扩大了血管造影的应用范围。后者具有减少曝光量和宽容度大等优点,更重要的是可作为数字化图像纳入图像存储与传输系统(picture archiving and communication systems,PACS)
7、。而X线实时高分辨力成像板将是最具革命性、最有发展前途的影像探测器之一。l 20世纪50年代和60年代,超声成像(ultrasonography,USG)设备和核医学设备相继出现,当时在医学上的应用往往各成系统。1972年X-CT设备的开发,使医学影像设备进入了一个以计算机和体层成像相结合、以图像重建为基础的新阶段。70年代末80年代初,超声CT(ultrasonic CT,UCT)、放射性核素CT和数字X线机逐步兴起,并应用于临床。尽管这些设备的成像参数、诊断原理和检查方法各不相同,但其结果都是形成某种影像,并依此进行诊断。l 介入放射学自20世纪60年代兴起,于70年代中期逐步应用于临床,
8、近年来尤以介入治疗进展迅速。因其具有安全、简便、经济等特点,深受医生和病人的普遍重视与欢迎,现仍处于不断发展和完善的过程之中。90年代倍受人们青睐的立体定向放射外科学设备,由于它可以不作开颅手术而治疗一些脑疾患,很受欢迎,全世界都在积极开发和应用这种高新设备。介入放射学设备与立体定向放射外科学设备,都是通过医学影像设备来引导或定位的,所以也属于医学影像设备的范畴。l 综上所述,多种类型的医学影像诊断设备与医学影像治疗设备相结合,共同构成了现代医学影像设备体系。第二节第二节 医学影像设备的分类医学影像设备的分类 现代医学影像设备可分为两大类,即医学影像诊断设备和医学影像治疗设备。一、诊断用设备一
9、、诊断用设备 按照影像信息的载体来区分,现代医学影像诊断设备主要有以下几种类型:X线设备(含X-CT设备);MRI设备;超声设备;核医学设备;热成像设备;光学成像设备(医用内镜)。l(一)(一)X线设备线设备l X线设备通过测量穿透人体的X线来实现人体成像。X线成像反映的是人体组织的密度变化,显示的是脏器的形态,而对脏器功能和动态方面的检测较差。此类设备主要有常规X线机、数字X线机和X-CT设备等。l 以X线作为医学影像信息的载体,出于两方面的考虑,即分辨力和衰减系数。从分辨力来看,为了获得有价值的影像,辐射波长应小于510-11m。另一方面,当辐射波通过人体时,应呈现衰减特性。若衰减过大,则
10、透射人体的辐射波微弱,当测量透射人体的辐射波时,由于噪声的存在,很可能导致测量结果无意义。反之,若辐射波透射人体时几乎无衰减,则因无法精确的测量衰减部分而失效。l 在X线设备中,屏-片组合分辨力较高,可达到510LP/mm,且使用方便、价格较低,是目前各级医院中使用最普遍的设备之一。但它得到的是人体不同深度组织信息叠加在一起的二维图像,所以病变的深度很难确定,且对软组织分辨不佳。数字X线机使用曝光量宽容度大,可获得数字化影像,便于进行图像的后处理,且扩大了诊断范围,利于胃肠和心脏等部位的检查。X-CT影像的空间分辨力可小于0.5mm,能分辨组织的密度差别可达到0.5。X-CT影像的清晰度很高,
11、可确定受检脏器的位置、大小和形态变化。l(二)(二)MRI设备设备l MRI设备通过测量构成人体组织中某些元素的原子核的磁共振信号,实现人体成像。20世纪40年代发现了物质的磁共振现象,20世纪80年代MRI设备应用于临床。lMRI影像的空间分辨力一般为0.51.7mm,不如X-CT;但它对组织的分辨远远好于X-CT,在MRI影像上可显示软组织、肌肉、肌腱、脂肪、韧带、神经、血管等。此外,它还有一些特殊的优点:MRI剖面的定位完全是通过调节磁场,用电子方式确定的,因此能完全自由地按照要求选择层面;MRI对软组织的对比度比X-CT优越,能非常清楚地显示脑灰质与白质;MR信号含有较丰富的有关受检体
12、生理、生化特性的信息,而X-CT只能提供密度测量值;MRI能在活体组织中探测体内的化学性质,提供关于内部器官或细胞新陈代谢方面的信息;MRI无电离辐射。目前,尚未见到MR对人体危害的报道。l MRI的缺点:与X-CT相比,成像时间较长;植入金属的病人,特别是植入心脏起搏器的病人,不能进行MRI检查;设备购置与运行的费用较高。l总之,MRI设备可作任意方向的体层检查,能反映人体分子水平的生理、生化等方面的功能特性,对某些疾病(如肿瘤)可作早期或超早期诊断,是一种很有发展前途和潜力的高技术设备。l(三)诊断用超声设备(三)诊断用超声设备l 诊断用超声设备分为利用超声(ultrasound,US)回
13、波的USG设备和利用US透射的超声CT(ultrasonography CT,UCT)两大类。USG设备,根据其显示方式不同,可以分为A型(幅度显示)、B型(切面显示)、C型(亮度显示)、M型(运动显示)、P型(平面目标显示)等。目前,医院中用的最多的是B型USG设备,俗称B超,其横向分辨力可达到2mm以内,所得到的软组织图像清晰而富有层次。利用US多普勒系统,可实现各种血流参量的测量,是近年来广泛应用的又一种US技术。临床上,USG设备在甲状腺、乳房、心血管、肝脏、胆囊、泌尿科和妇产科等方面有其独到之处。目前UCT所需扫描时间较长,且分辨力低,有待于进一步改进与提高。但由于它是一种无损伤和非
14、侵入式的诊断设备,因此将来可能成为主要的影像诊断设备。l X线成像与US成像是当前用得最为普遍的两种检查方法,但对人体有无危害是它们之间的一个重要区别。就X线来说,尽管现在已经显著地降低了诊断用剂量,但其危害性仍不容忽视。实践表明,它将导致癌症、白血症和白内障等疾病的发病率增加。而从现有资料来看,目前诊断用US剂量还未有使受检者发生不良反应的报道。l 此外,X线在体内沿直线传播,不受组织差异的影响,是其有利的一面,但不利的一面是难以有选择地对所指定的平面成像。对US波来说,不同物质的折射率变化范围相当大,这将造成影像失真。但它在绝大部分组织中的传播速度是相近的,骨骼和含有空气的组织(如肺)除外
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医学影像 设备 第一章 概论 课件
限制150内