spss因子分析案例.doc
《spss因子分析案例.doc》由会员分享,可在线阅读,更多相关《spss因子分析案例.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、例11-1下表资料为25名健康人的7项生化检验结果,7项生化检验指标依次命名为X1至X7,请对该资料进行因子分析。X1X2X3X4X5X6X73.768.596.227.579.035.513.278.749.649.738.597.124.695.511.665.909.848.394.947.239.469.554.948.219.413.664.996.147.287.083.980.627.009.491.332.985.493.011.341.615.769.274.924.382.307.315.354.523.086.440.541.344.527.072.591.300.443
2、.311.031.001.173.682.171.271.571.551.512.541.031.771.044.254.502.425.115.2810.029.8412.6611.766.923.3611.6813.579.879.179.725.985.812.808.8413.6010.056.687.7912.0011.748.079.1012.509.777.502.171.794.545.337.633.5313.139.877.852.642.764.571.785.409.023.966.494.3911.582.771.793.752.4513.7410.162.732.1
3、06.227.308.844.7618.5211.069.913.433.555.382.097.5012.675.249.065.3716.183.512.104.663.104.782.131.090.821.282.408.391.122.353.702.621.192.013.433.721.971.751.432.812.272.421.051.291.720.9111.2.1 数据准备 激活数据管理窗口,定义变量名:分别为X1、X2、X3、X4、X5、X6、X7,按顺序输入相应数值,建立数据库,结果见图11.1。图11.1 原始数据的输入11.2.2 统计分析 激活Statisti
4、cs菜单选Data Reduction的Factor.命令项,弹出Factor Analysis对话框(图11.2)。在对话框左侧的变量列表中选变量X1至X7,点击钮使之进入Variables框。图11.2 因子分析对话框点击Descriptives.钮,弹出Factor Analysis:Descriptives对话框(图11.3),在Statistics中选Univariate descriptives项要求输出各变量的均数与标准差,在Correlation Matrix栏内选Coefficients项要求计算相关系数矩阵,并选KMO and Bartletts test of spher
5、icity项,要求对相关系数矩阵进行统计学检验。点击Continue钮返回Factor Analysis对话框。图11.3 描述性指标选择对话框 点击Extraction.钮,弹出Factor Analysis:Extraction对话框(图11.4),系统提供如下因子提取方法:图11.4 因子提取方法选择对话框 Principal components:主成分分析法; Unweighted least squares:未加权最小平方法; Generalized least squares:综合最小平方法; Maximum likelihood:极大似然估计法; Principal axis
6、factoring:主轴因子法; Alpha factoring:因子法; Image factoring:多元回归法。 本例选用Principal components方法,之后点击Continue钮返回Factor Analysis对话框。 点击Rotation.钮,弹出Factor Analysis:Rotation对话框(图11.5),系统有5种因子旋转方法可选:图11.5 因子旋转方法选择对话框 None:不作因子旋转; Varimax:正交旋转; Equamax:全体旋转,对变量和因子均作旋转; Quartimax:四分旋转,对变量作旋转; Direct Oblimin:斜交旋转。
7、 旋转的目的是为了获得简单结构,以帮助我们解释因子。本例选正交旋转法,之后点击Continue钮返回Factor Analysis对话框。 点击Scores.钮,弹出弹出Factor Analysis:Scores对话框(图11.6),系统提供3种估计因子得分系数的方法,本例选Regression(回归因子得分),之后点击Continue钮返回Factor Analysis对话框,再点击OK钮即完成分析。图11.6 估计因子分方法对话框11.2.3 结果解释 在输出结果窗口中将看到如下统计数据: 系统首先输出各变量的均数(Mean)与标准差(Std Dev),并显示共有25例观察单位进入分析;
8、接着输出相关系数矩阵(Correlation Matrix),经Bartlett检验表明:Bartlett值 = 326.28484,P0.0001,即相关矩阵不是一个单位矩阵,故考虑进行因子分析。 Kaiser-Meyer-Olkin Measure of Sampling Adequacy是用于比较观测相关系数值与偏相关系数值的一个指标,其值愈逼近1,表明对这些变量进行因子分析的效果愈好。今 KMO值 = 0.32122,偏小,意味着因子分析的结果可能不能接受。Analysis number 1 Listwise deletion of cases with missing valuesM
9、ean Std Dev LabelX1 7.10000 2.32380X2 4.77320 2.41779X3 2.34880 1.66556X4 9.15240 3.01405X5 5.45840 3.27344X6 7.16720 4.55817X7 2.34600 1.61091Number of Cases = 25Correlation Matrix:X1 X2 X3 X4 X5 X6 X7X1 1.00000X2 .58026 1.00000X3 .20113 .36379 1.00000X4 .90900 .83725 .43611 1.00000X5 .28347 .16590
10、 -.70423 .16328 1.00000X6 .28656 .26119 -.68058 .20309 .99020 1.00000X7 -.53321 -.60846 -.64918 -.67758 .42733 .35732 1.00000Kaiser-Meyer-Olkin Measure of Sampling Adequacy = .32122Bartlett Test of Sphericity = 326.28484, Significance = .00000使用主成分分析法得到2个因子,因子矩阵(Factor Matrix)如下,变量与某一因子的联系系数绝对值越大,则该
11、因子与变量关系越近。如本例变量X7与第一因子的值为-0.88644,与第二因子的值为0.21921,可见其与第一因子更近,与第二因子更远。或者因子矩阵也可以作为因子贡献大小的度量,其绝对值越大,贡献也越大。 在Final Statistics一栏中显示各因子解释掉方差的比例,也称变量的共同度(Communality)。共同度从0到1,0为因子不解释任何方差,1为所有方差均被因子解释掉。一个因子越大地解释掉变量的方差,说明因子包含原有变量信息的量越多。Extraction 1 for analysis 1, Principal Components Analysis (PC)PC extract
12、ed 2 factors.Factor Matrix:Factor 1 Factor 2X1 .74646 .48929X2 .79644 .37219X3 .70890 -.59727X4 .91054 .38865X5 -.23424 .96350X6 -.17715 .97172X7 -.88644 .21921Final Statistics:Variable Communality * Factor Eigenvalue Pct of Var Cum Pct*X1 .79660 * 1 3.39518 48.5 48.5X2 .77284 * 2 2.80632 40.1 88.6X
13、3 .85927 *X4 .98014 *X5 .98320 *X6 .97561 *X7 .83384 *下面显示经正交旋转后的因子负荷矩阵(Rotated Factor Matrix)和因子转换矩阵(Factor Transformation Matrix)。旋转的目的是使复杂的矩阵变得简洁,即第一因子替代了X1、X2、X4、X7的作用,第二因子替代了X3、X5、X6的作用。VARIMAX rotation 1 for extraction 1 in analysis 1 - Kaiser Normalization.VARIMAX converged in 3 iterations.Ro
14、tated Factor Matrix:Factor 1 Factor 2X1 .87795 .16064X2 .87848 .03332X3 .42098 -.82586X4 .99001 .00414X5 .15872 .97878X6 .21452 .96415X7 -.73151 .54656Factor Transformation Matrix:Factor 1 Factor 2Factor 1 .92135 -.38873Factor 2 .38873 .92135最后将第一因子的因子分用变量名fac_1、第二因子的因子分用变量名fac_2存入原始数据库中。这些值既可用于模型诊断
15、,又可用于进一步分析。基于因子分析法的西部地区服务业竞争力评价【摘要】:加快服务业的发展,提高服务业在国民经济中的地位,是我国政府近十年来经济政 策的重要导向之一。随着西部大开发的推进,西部地区服务业的发展状况得到广泛关注。该 研究基于服务业和服务业竞争力的理论,运用因子分析方法,对西部十二省区的服务业竞争 力进行分析评价,并根据因子分析的结果和西部十二省区服务业发展的优劣势,提出提升该 地区服务业竞争力水平的对策与建议。 关键词:服务业;竞争力;因子分析 中图分类号:N949 Abstract During the last ten years, speeding up the develo
16、pment of service industry and enhancing its position in national economy is one of the most important directions of the economic policy of our government. Along with the progress of Development of the West Regions, all circles concerned starts paying attention to the development of service industry
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- spss 因子分析 案例
限制150内