计算机算法的动态规划课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《计算机算法的动态规划课件.ppt》由会员分享,可在线阅读,更多相关《计算机算法的动态规划课件.ppt(59页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1第3章 动态规划2 学习要点学习要点:理解动态规划算法的概念。掌握动态规划算法的基本要素(1)最优子结构性质(2)重叠子问题性质掌握设计动态规划算法的步骤。(1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。第三章.动态规划(Dynamic Programming)适用问题:具备最优子结构最优子结构性质和子问题重叠性子问题重叠性的最优化问题.将问题的求解过程化为多步选择或决策的结果将问题的求解过程化为多步选择或决策的结果,在每一步决策上在每一步决策上,列列出各种可能的选择出各种可能的选择(各子问题
2、的可行解各子问题的可行解),),舍去那些肯定不能成为最舍去那些肯定不能成为最优解的局部解优解的局部解.最后一步得到的解必是最优解最后一步得到的解必是最优解.问题的整体的最优解中包问题的整体的最优解中包含着它的子问题的最优解含着它的子问题的最优解3.1 基本思想用以求解最优化问题算法设计与分析算法设计与分析 动态规划动态规划与贪心算法比较与贪心算法比较:都是将问题的求解过程化为多步决策.区别是:贪心法每采用一次贪心策略便做出唯一决策,求解过程只产生一个决策序列;求解过程为自顶向下,不一定得到最优解.动态规划的求解过程产生多个决策序列,下一步的选择总是依赖上一步的结果.求解过程多为自底向上.总能得
3、到最优解.第第i+1i+1步问题的求解中包含第步问题的求解中包含第i i步步子问题的最优解子问题的最优解,形成递归求解形成递归求解.串形与树形优化系列算法设计与分析算法设计与分析 动态规划动态规划1).分析最优解的结构.2).给出计算局部最优解值的递归关系.3).自底向上计算局部最优解的值.4).根据最优解的值构造最优解.常见应用:0-1背包问题,图像压缩,最短路径,矩阵连乘,作业调度等等.算法的步骤算法的步骤注意0-1背包问题不能用贪心算法求解.优化子问题优化子问题最终不取作用最终不取作用的优化子问题的优化子问题贪心算法贪心算法动态规划算法动态规划算法5n动态规划算法与分治法类似,其基本思想
4、也是将待求解问题分解成若干个子问题算法总体思想nT(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n)=6n但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。算法总体思想nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4
5、)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)7n如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。算法总体思想n=n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n)8(1)单个矩阵是完全加括号的;(2)矩阵连乘积 是完全
6、加括号的,则 可 表示为2个完全加括号的矩阵连乘积 和 的乘积并加括号,即 16000,10500,36000,87500,34500u完全加括号的矩阵连乘积可递归地定义为:u设有四个矩阵 ,它们的维数分别是:u总共有五中完全加括号的方式完全加括号的矩阵连乘积9矩阵连乘问题给定n个矩阵A1,A2,An,其中Ai与Ai+1是可乘的,i=1,2,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。u穷举法穷举法:列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。算法复杂度分析:算法复杂度分析:对于n个矩阵的连
7、乘积,设其不同的计算次序为P(n)。由于每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1.Ak)(Ak+1An)可以得到关于P(n)的递推式如下:10矩阵连乘问题u穷举法穷举法u动态规划动态规划将矩阵连乘积 简记为Ai:j,这里ij 考察计算Ai:j的最优计算次序。设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开,ikj,则其相应完全加括号方式为计算量:Ai:k的计算量加上Ak+1:j的计算量,再加上Ai:k和Ak+1:j相乘的计算量11n特征:计算Ai:j的最优次序所包含的计算矩阵子链 Ai:k和Ak+1:j的次序也是最优的。n矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这
8、种性质称为最优子结构性质最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。分析最优解的结构12建立递归关系n设计算Ai:j,1ijn,所需要的最少数乘次数mi,j,则原问题的最优值为m1,n n当i=j时,Ai:j=Ai,因此,mi,i=0,i=1,2,nn当ij时,n可以递归地定义mi,j为:这里 的维数为 的位置只有 种可能13计算最优值n对于1ijn不同的有序对(i,j)对应于不同的子问题。因此,不同子问题的个数最多只有n由此可见,在递归计算时,许多子问题被重复计算多次许多子问题被重复计算多次。这也是该问题可用动态规划算法求解的又一显著特征。n用动态规划算法解此
9、问题,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法void MatrixChain(int p,int n,int*m,int*s)for(int i=1;i=n;i+)mii=0;for(int r=2;r=n;r+)/r/r子链长度子链长度 for(int i=1;i=n-r+l;i+)/i/i子链开始位置子链开始位置 int j=i+r-1;/j/j子链结束位置子链结束位置 mij=mi+1j+pi-1*pi*pj;/初始化初始化 sij=i;/初始化初始
10、化 for(int k=i+1;k j;k+)/循环搜索循环搜索 int t=mik+mk+1j+pi-1*pk*pj;if(t 动态规划动态规划 矩阵乘法链矩阵乘法链矩阵乘法链动态规划算法算法设计与分析算法设计与分析 动态规划动态规划 矩阵乘法链矩阵乘法链s25=316动态规划算法的基本要素一、最优子结构一、最优子结构矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质最优子结构性质。在分析问题的最优子结构性质时,所用的方法具有普遍性:首先假设由问题的最优解导出的子问题的解不是最优的,然后再设法说明在这个假设下可构造出比原问题最优解更好的解,从而导致矛盾。利用问题的
11、最优子结构性质,以自底向上的方式递归地从子问题的最优解逐步构造出整个问题的最优解。最优子结构是问题能用动态规划算法求解的前提。同一个问题可以有多种方式刻划它的最优子结构,有些表示方法的求解速度更快(空间占用小,问题的维度低)17动态规划算法的基本要素二、重叠子问题二、重叠子问题递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。这种性质称为子问题的重叠性质子问题的重叠性质。动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果。通常不同的子问题个数随问题的大小呈多项式增长。因此用动态规划算法只需要多项
12、式时间,从而获得较高的解题效率。18动态规划算法的基本要素三、备忘录方法三、备忘录方法备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。int LookupChain(int i,int j)if(mij 0)return mij;if(i=j)return 0;int u=LookupChain(i,i)+LookupChain(i+1,j)+pi-1*pi*pj;sij=i;for(int k=i+1;k j;k+)int t=LookupChain(i,k)+LookupChain(k+1,j)+
13、pi-1*pk*pj;if(t u)u=t;sij=k;mij=u;return u;19最长公共子序列若给定序列X=x1,x2,xm,则另一序列Z=z1,z2,zk,是X的子序列是指存在一个严格递增下标序列i1,i2,ik使得对于所有j=1,2,k有:zj=xij。例如,序列Z=B,C,D,B是序列X=A,B,C,B,D,A,B的子序列,相应的递增下标序列为2,3,5,7。给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列公共子序列。给定2个序列X=x1,x2,xm和Y=y1,y2,yn,找出X和Y的最长公共子序列。20最长公共子序列的结构设序列X=
14、x1,x2,xm和Y=y1,y2,yn的最长公共子序列为Z=z1,z2,zk,则(1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。(2)若xmyn且zkxm,则Z是xm-1和Y的最长公共子序列。(3)若xmyn且zkyn,则Z是X和yn-1的最长公共子序列。由此可见,2个序列的最长公共子序列包含了这2个序列的前缀的最长公共子序列。因此,最长公共子序列问题具有最优子结最优子结构性质构性质。21子问题的递归结构由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系。用cij记录序列和的最长公共子序列的长度。其中,Xi=x1,x2,xi;Yj=y1,y2
15、,yj。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列。故此时Cij=0。其它情况下,由最优子结构性质可建立递归关系如下:22计算最优值由于在所考虑的子问题空间中,总共有(mn)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。void LCSLength(int m,int n,char*x,char*y,int*c,int*b)int i,j;for(i=1;i=m;i+)ci0=0;for(i=1;i=n;i+)c0i=0;for(i=1;i=m;i+)for(j=1;j=cij-1)cij=ci-1j;bij=2;else cij=cij-1;bij=3
16、;构造最长公共子序列构造最长公共子序列void LCS(int i,int j,char*x,int*b)if(i=0|j=0)return;if(bij=1)LCS(i-1,j-1,x,b);coutxi;else if(bij=2)LCS(i-1,j,x,b);else LCS(i,j-1,x,b);23算法的改进在算法lcsLength和lcs中,可进一步将数组b省去。事实上,数组元素cij的值仅由ci-1j-1,ci-1j和cij-1这3个数组元素的值所确定。对于给定的数组元素cij,可以不借助于数组b而仅借助于c本身在时间内确定cij的值是由ci-1j-1,ci-1j和cij-1中哪
17、一个值所确定的。如果只需要计算最长公共子序列的长度,则算法的空间需求可大大减少。事实上,在计算cij时,只用到数组c的第i行和第i-1行。因此,用2行的数组空间就可以计算出最长公共子序列的长度。进一步的分析还可将空间需求减至O(min(m,n)。24凸多边形最优三角剖分用多边形顶点的逆时针序列表示凸多边形,即P=v0,v1,vn-1表示具有n条边的凸多边形。若vi与vj是多边形上不相邻的2个顶点,则线段vivj称为多边形的一条弦。弦将多边形分割成2个多边形vi,vi+1,vj和vj,vj+1,vi。多边形的三角剖分多边形的三角剖分是将多边形分割成互不相交的三角形的弦的集合T。给定凸多边形P,以
18、及定义在由多边形的边和弦组成的三角形上的权函数w。要求确定该凸多边形的三角剖分,使得即该三角剖分中诸三角形上权之和为最小。25三角剖分的结构及其相关问题一个表达式的完全加括号方式相应于一棵完全二叉树,称为表达式的语法树。例如,完全加括号的矩阵连乘积(A1(A2A3)(A4(A5A6)所相应的语法树如图(a)所示。凸多边形v0,v1,vn-1的三角剖分也可以用语法树表示。例如,图(b)中凸多边形的三角剖分可用图(a)所示的语法树表示。矩阵连乘积中的每个矩阵Ai对应于凸(n+1)边形中的一条边vi-1vi。三角剖分中的一条弦vivj,ij,对应于矩阵连乘积Ai+1:j。26最优子结构性质凸多边形的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算机 算法 动态 规划 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内