教育专题:《因式分解》复习课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《教育专题:《因式分解》复习课件.ppt》由会员分享,可在线阅读,更多相关《教育专题:《因式分解》复习课件.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、因式分解的复习因式分解的复习1.基本概念基本概念2.基本方法基本方法3.一般步骤一般步骤4.主要应用主要应用5.能力拓展能力拓展6.课堂小结课堂小结第一步第一步第二步第二步第三步第三步第四步第四步平方差公式平方差公式a-b=(a+b)(a-b)完全平方公式完全平方公式a2ab+b=(ab)把一个多项式化成几个整式的积的形式叫做把一个多项式化成几个整式的积的形式叫做因式分解因式分解,也,也叫叫分解因式分解因式。一个多项式中每一项都含有的相同的因式,叫做这个多项式各一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的项的公因式公因式。如果一个多项式的各项含有公因式,那么可以把公因式提取如果一
2、个多项式的各项含有公因式,那么可以把公因式提取出来进行因式分解,这种因式分解的方法叫做出来进行因式分解,这种因式分解的方法叫做提取公因式法。提取公因式法。平方差公式法和完全平方公式法统称平方差公式法和完全平方公式法统称公式法公式法平方差公式:适用于平方差公式:适用于平方差平方差形式的多项式形式的多项式完全平方公式法:适用于完全平方公式法:适用于完全平方式完全平方式。公式公式 法法因式分解因式分解基本概念基本概念提公因式法提公因式法挑战自我:挑战自我:A层层练习练习B层层练习练习C层层练习练习基本概念基本概念否否否否是是A A层练习层练习下列代数式的变形当中哪些是因式分下列代数式的变形当中哪些是
3、因式分解,哪些不是?解,哪些不是?(4(43=123=12)(1)3a2+6a=3a(a+2)(2)(2y+1)(2y-1)=4y2-1(3)18a3bc=3a2b6acsure?sure?sure?基本概念基本概念否否是是否否是是B B层练习层练习检验下列因式分解是否正确?检验下列因式分解是否正确?(5(54=204=20)(1)(1)2ab2+8ab3=2ab2(1+4b)(2)2(2)2x x2 2-9=-9=(2x+3x+3)(2x-3x-3)(3)(3)x2-2x-3=(x-3)(x+1)(4)(4)36a2-12a-1=(6a-1)2答答案案答案答案答答案案答案答案基本概念基本概念
4、C C层练习层练习填空填空(5(53=153=15)1.1.若若 x x2 2+mx-n+mx-n能分解成能分解成(x-2)(x-5),(x-2)(x-5),则则m=m=,n=,n=。2 2x x2 2-8x+m=(x-4)(-8x+m=(x-4)(),),且且m=m=。-7-10 x-4x-416基本概念基本概念第一步第第一步第二环节二环节一般方法提公因式法:公式公式法法完全平方类平方差类基本方法基本方法1.公因式确定公因式确定(1)系数:)系数:取各系数的取各系数的最大公约数;最大公约数;(2)字母:)字母:取各项取各项相同相同的字母的字母;(3)相同字母的指数:)相同字母的指数:取取最低
5、最低指数指数。2.变形规律:变形规律:(1)x-y=-(y-x)(2)-x-y=-(x+y)(3)(x-y)2=(y-x)2 (4)(x-y)3=-(y-x)33.一般步骤一般步骤(1)确定应提取的公因式;)确定应提取的公因式;(2)多项式除以公因式,所得的商作为另一个因式;)多项式除以公因式,所得的商作为另一个因式;(3)把多项式写成这两个因式的积的形式。)把多项式写成这两个因式的积的形式。提公因式法:用平方差公式分解因式的关键:用平方差公式分解因式的关键:多项式是否多项式是否能看成两个数的平方的差;能看成两个数的平方的差;用完全平方公式分解因式的关键:用完全平方公式分解因式的关键:在于判断
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解 教育 专题 复习 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内