《(精品)3.1.2导数的概念 (4).pptx》由会员分享,可在线阅读,更多相关《(精品)3.1.2导数的概念 (4).pptx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.1.2 导数的概念1 1、平均变化率、平均变化率 一般的,函数在区间上一般的,函数在区间上 的平均变化率为的平均变化率为、平均变化率是曲线陡峭程度的平均变化率是曲线陡峭程度的“数量化数量化”,是一种粗,是一种粗略略的刻画的刻画 在高台跳水运动中,运动员相对于水面的高在高台跳水运动中,运动员相对于水面的高度为度为h(单位:(单位:m)与起跳后的时间)与起跳后的时间t(单位:单位:s)存存在函数关系在函数关系h=-4.9t2+6.5t+10hto求求2时的瞬时速度?时的瞬时速度?2我们先考察我们先考察2附近的情况。附近的情况。任取一个时刻任取一个时刻2,是时间改变量,可以是正值,是时间改变量,
2、可以是正值,也可以是负值,但不为也可以是负值,但不为0.当当0时,在时,在2之前;之前;当当0时,在时,在2之后。之后。0时时20时时2思考:思考:t0时时,在在2,2+t 这段时这段时间内间内当t=0.01时,当t=0.01时,当t=0.001时,当t=0.001时,当t=0.0001时,当t=0.0001时,t=0.00001,t=0.00001,t=0.000001,t=0.000001,平均变化率近似地刻画了曲线在某一区间上的变化趋平均变化率近似地刻画了曲线在某一区间上的变化趋势势.l如何精确地刻画曲线在一点处的变化趋势呢如何精确地刻画曲线在一点处的变化趋势呢?当当t趋近于趋近于0时时
3、,平均平均速度有什么变化趋势速度有什么变化趋势?瞬时速度 在局部以平均速度代替瞬时速度,然后通过在局部以平均速度代替瞬时速度,然后通过取极取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。限,从瞬时速度的近似值过渡到瞬时速度的精确值。思考:思考:如何求瞬时速度?如何求瞬时速度?lim是什么意思?是什么意思?在其下面的条件下求右面的极限值。在其下面的条件下求右面的极限值。运动员在某一时刻运动员在某一时刻0的瞬时速度如何表示的瞬时速度如何表示?、函数的平均变化率怎么表示?、函数的平均变化率怎么表示?思考:定义定义:函数函数 y=f(x)在在 x=x0 处的瞬时变化率是处的瞬时变化率是称为函数称为函
4、数 y=f(x)在在 x=x0 处的处的导数导数,记作记作或或 ,即即 由导数的意义可知由导数的意义可知,求函数求函数y=f(x)在点在点x0处的导数处的导数的基本方法是的基本方法是:注意注意:这里的增量不是一般意义上的增量这里的增量不是一般意义上的增量,它可正也可负它可正也可负.自变量的增量自变量的增量x的形式是多样的的形式是多样的,但不论但不论x选择选择 哪种形式哪种形式,y也必须选择与之相对应的形式也必须选择与之相对应的形式.一差、二比、三极限一差、二比、三极限例例1.(1)求函数求函数y=3x2在在x=1处的导数处的导数.(2)求函数求函数f(x)=-x2+x在在x=-1附近的平均附近
5、的平均变化率,并求出在该点处的导数变化率,并求出在该点处的导数(3)质点运动规律为质点运动规律为s=t2+3,求,求质点在质点在t=3的瞬时速度的瞬时速度.三典例分析三典例分析题型二:求函数在某处的导数题型二:求函数在某处的导数例例1.(1)求函数求函数y=3x2在在x=1处的导数处的导数.三典例分析三典例分析题型二:求函数在某处的导数题型二:求函数在某处的导数例例1.(2)求函数求函数f(x)=-x2+x在在x=-1附近的平均变附近的平均变化率,并求出在该点处的导数化率,并求出在该点处的导数 三典例分析三典例分析题型二:求函数在某处的导数题型二:求函数在某处的导数例例1.(3)质点运动规律为质点运动规律为s=t2+3,求质点在,求质点在t=3的瞬时速度的瞬时速度.三典例分析三典例分析题型二:求函数在某处的导数题型二:求函数在某处的导数练习练习:小结:小结:1 1求物体运动的瞬时速度:求物体运动的瞬时速度:(1 1)求位移增量)求位移增量s=s(t+t)-s(t)s=s(t+t)-s(t)(2)(2)求平均速度求平均速度(3 3)求极限)求极限2由导数的定义可得求导数的一般步骤:由导数的定义可得求导数的一般步骤:(1)求函数的增量)求函数的增量y=f(x0+t)-f(x0)(2)求平均变化率求平均变化率(3)求极限)求极限
限制150内