《运筹学》研究生用概述课件.ppt
《《运筹学》研究生用概述课件.ppt》由会员分享,可在线阅读,更多相关《《运筹学》研究生用概述课件.ppt(127页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、运筹学运筹学1 1、绪、绪 论论 2、线、线 性性 规规 划划 3、运、运 输输 问问 题题 4、动、动 态态 规规 划划 5、图与网络分析、图与网络分析 6、排、排 队队 论论 7、教学日历、教学日历运运 筹筹 学学 目录目录说说 明明 本教学课件是与教材紧密配合使用的,教材为:管理数学(下)-运筹学 蓝伯雄程佳惠陈秉正编著清华大学出版社,2000年3月参考书:运筹学 清华大学出版社或其他的运筹学方面本科教材的相关内容2绪 论 运筹学(运筹学(Operational Research)Operational Research)直译为直译为“运作研究运作研究”运筹学是运用科学的方法(如分析、试
2、验、量化等)来决定如何最佳地运营和设计各种系统的一门学科。运筹学对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。运筹学有广泛应用(可以自己找一些参考书看)运筹学的产生和发展(可以自己找一些参考书看)3运筹学解决问题的过程运筹学解决问题的过程1)提出问题:认清问题2)寻求可行方案:建模、求解3)确定评估目标及方案的标准或方法、途径4)评估各个方案:解的检验、灵敏性分析等5)选择最优方案:决策6)方案实施:回到实践中7)后评估:考察问题是否得到完满解决1)2)3):形成问题;4)5)分析问题:定性分析与定量分析。构成决策。4运筹学的分支运筹学
3、的分支线性规划非线性规划整数规划动态规划多目标规划随机规划模糊规划等图与网络理论存储论排队论决策论对策论排序与统筹方法可靠性理论等5运筹学在工商管理中的应用运筹学在工商管理中的应用生产计划:生产作业的计划、日程表的编排、合理下 料、配料问题、物料管理等库存管理:多种物资库存量的管理,库存方式、库存 量等运输问题:确定最小成本的运输线路、物资的调拨、运输工具的调度以及建厂地址的选择等人事管理:对人员的需求和使用的预测,确定人员编 制、人员合理分配,建立人才评价体系等市场营销:广告预算、媒介选择、定价、产品开发与 销售计划制定等财务和会计:预测、贷款、成本分析、定价、证券管 理、现金管理等*设备维
4、修、更新,项目选择、评价,工程优化设计与管理等6运筹学方法使用情况运筹学方法使用情况(美美1983)1983)(%)7运筹学方法在中国使用情况运筹学方法在中国使用情况(随机抽样随机抽样)(%)8运筹学的推广应用前景运筹学的推广应用前景据美劳工局据美劳工局19921992年统计预测年统计预测:运筹学应用分析人员需求从运筹学应用分析人员需求从19901990年到年到20052005年的增长百分比预测为年的增长百分比预测为73%,73%,增长速度排到各项增长速度排到各项职业的前三位职业的前三位.结论结论:运筹学在国内或国外的推广前景是非常广阔的运筹学在国内或国外的推广前景是非常广阔的工商企业对运筹学
5、应用和需求是很大的工商企业对运筹学应用和需求是很大的在工商企业推广运筹学方面有大量的工作要做在工商企业推广运筹学方面有大量的工作要做9学习运筹学要把重点放在分析、理解有关的概念、思路上。在自学过程学习运筹学要把重点放在分析、理解有关的概念、思路上。在自学过程中,应该多向自己提问,如一个方法的实质是什么,为什么这样做,怎中,应该多向自己提问,如一个方法的实质是什么,为什么这样做,怎么做等。么做等。自学时要掌握三个重要环节:自学时要掌握三个重要环节:1、认真阅读教材和参考资料,以指定教材为主,同时参考其他有关书籍。一般每一本运筹学教材都有自己的特点,但是基本原理、概念都是一致的。注意主从,参考资料
6、会帮助你开阔思路,使学习深入。但是,把时间过多放在参考资料上,会导致思路分散,不利于学好。2、要在理解了基本概念和理论的基础上研究例题,注意例题是为了帮助你理解概念、理论的。作业练习的主要作用也是这样,它同时还有让你自己检查自己学习的作用。因此,做题要有信心,要独立完成,不要怕出错。因为,整个课程是一个整体,各节内容有内在联系,只要学到一定程度,知识融会贯通起来,你做题的正确性自己就有判断。3、要学会做学习小结。每一节或一章学完后,必须学会用精炼的语言来该书所学内容。这样,你才能够从较高的角度来看问题,更深刻的理解有关知识和内容。这就称作“把书读薄”,若能够结合自己参考大量文献后的深入理解,把
7、相关知识从更深入、广泛的角度进行论述,则称之为“把书读厚”在建数学模型时要结合实际应用,要学会用计算机软件解决问题在建数学模型时要结合实际应用,要学会用计算机软件解决问题。如何学习运筹学课程如何学习运筹学课程返回目录10各章节的重点、难点各章节的重点、难点及注意事项及注意事项111 1、线线 性性 规规 划划线性规划模型:线性规划模型:目标函数:Max z=50 x1+100 x2 约束条件:s.t.x1+x2 300 2 x1+x2 400 x2 250 x1,x2 0*看 p 7-9 例1-1,1-2 例例1.某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的设备台时及A、
8、B两种原材料的消耗以及资源的限制,如下表:问题:工厂应分别生产多少单位甲、乙产品才能使工厂获利最多?121 1、线线 性性 规规 划划 (续(续1.11.1)1.1 线性规划的概念线性规划的概念线性规划的组成线性规划的组成:目标函数 Max f 或 Min f 约束条件 s.t.(subject to)满足于 决策变量 用符号来表示可控制的因素 一般形式一般形式(p10-p 11)目标函数:Max(Min)z=c1 x1+c2 x2+cn xn 约束条件:s.t.a11 x1+a12 x2+a1n xn (=,)b1 a21 x1+a22 x2+a2n xn (=,)b2 am1 x1+am2
9、 x2+amn xn (=,)bm x1,x2,xn 0 标准形式标准形式(p11-p 15,例例1-3)目标函数:Max z =c1 x1+c2 x2+cn xn 约束条件:s.t.a11 x1+a12 x2+a1n xn =b1 a21 x1+a22 x2+a2n xn =b2 am1 x1+am2 x2+amn xn =bm x1,x2,xn 0*练习:p 68-70 习题1 1-1,1-2131 1、线线 性性 规规 划划 (续(续1.21.2)1.2 线性规划问题解的概念及性质线性规划问题解的概念及性质熟悉下列一些解的概念(p15-16)可行解、可行解集(可行域),最优解、最优值,基
10、、基变量、非基变量,基本解、基本可行解,可行基、最优基。图解方法及各有关概念的意义(p16-20)看:图解法步骤,例1-4,1-5,1-6,1-7,1-8,1-9 下一页是一个图解法解题的一个例子,右图中的阴影部分为可行域。单纯形法的理论基础(p20-30)1.2.3段要求看懂,了解如何直接通过对约束矩阵的分析求出基本可行解 1.2.4,1.2.5两段应注重结论的了解,如单纯形法思想和关于线性规划解的四个定理,而对证明过程则可根据自己的数学基础来掌握:基础很好,可要求掌握;否则,也可略去不看。*习题:p70 习题1 1-3,1-4141 1、线线 性性 规规 划划 (续(续1.21.2)例例1
11、.目标函数:Max z=50 x1+100 x2 约束条件:s.t.x1+x2 300 (A)2 x1+x2 400 (B)x2 250 (C)x1 0 (D)x2 0 (E)得到最优解:x1=50,x2 =250 最优目标值 z =27500151 1、线线 性性 规规 划划 (续(续1.31.3)1.3 单纯形法单纯形法 利用单纯形表的方法求解线性规利用单纯形表的方法求解线性规划划重点重点(p30-45 1.3.1,p30-45 1.3.1,1.3.2,1.3.3)1.3.2,1.3.3)此项内容是本章的重点,学习中应此项内容是本章的重点,学习中应注意掌握表格单纯形法求解线性规划问注意掌握
12、表格单纯形法求解线性规划问题的基本过程。要通过读懂教材内容以题的基本过程。要通过读懂教材内容以及大量练习来掌握。及大量练习来掌握。161 1、线线 性性 规规 划划 (续(续1.31.3)表格单纯形法表格单纯形法(p40-p 45)考虑:考虑:bi 0 i=1,m Max z=c1 x1+c2 x2+cn xn s.t.a11 x1+a12 x2+a1n xn b1 a21 x1+a22 x2+a2n xn b2 am1 x1+am2 x2+amn xn bm x1,x2,xn 0加入松弛变量:加入松弛变量:Max z=c1 x1+c2 x2+cn xn s.t.a11 x1+a12 x2+a
13、1n xn+xn+1=b1 a21 x1+a22 x2+a2n xn+xn+2=b2 am1 x1+am2 x2+amn xn+xn+m=bm x1,x2,xn,xn+1,xn+m 017显然,显然,xj=0 j=1,n;xn+i=bi i=1,m 是基本可行解 对应的基是单位矩阵。以下是初始单纯形表:m m其中:f=-cn+i bi j=cj-cn+i aij 为检验数 cn+i=0 i=1,m i=1 i=1 an+i,i=1 ,an+i,j=0(ji)i,j=1,m1 1、线线 性性 规规 划划 (续(续1.31.3)181 1、线线 性性 规规 划划 (续(续1.31.3单纯形法解题例
14、)单纯形法解题例)例例1。化标准形式:。化标准形式:Max z=50 x1+100 x2 s.t.x1+x2+x3 =300 2 x1+x2+x4 =400 x2+x5=250 x1,x2,x3,x4,x5 0最优解 x1=50 x2=250 x4 =50(松弛标量,表示原料A有50个单位的剩余)19注意:单纯形法中,注意:单纯形法中,1、每一步运算只能用矩阵初等行变换;、每一步运算只能用矩阵初等行变换;2、表中第、表中第3列的数总应保持非负(列的数总应保持非负(0););3、当所有检验数均非正(、当所有检验数均非正(0)时,得到最)时,得到最优单纯形表。优单纯形表。1 1、线线 性性 规规
15、划划 (续(续1.31.3)201 1、线线 性性 规规 划划 (续(续1.31.3)一般情况的处理及注意事项的强调(一般情况的处理及注意事项的强调(p45-55)1.3.4段主要是讨论初始基本可行解不明显时,常用的方法。段主要是讨论初始基本可行解不明显时,常用的方法。要弄清它的原理,并通过例要弄清它的原理,并通过例1-14 例例1-17掌握这些方法,同掌握这些方法,同时进一步熟悉用单纯形法解题。时进一步熟悉用单纯形法解题。考虑一般问题:考虑一般问题:bi 0 i=1,m Max z=c1 x1+c2 x2+cn xn s.t.a11 x1+a12 x2+a1n xn =b1 a21 x1+a
16、22 x2+a2n xn =b2 am1 x1+am2 x2+amn xn =bm x1,x2,xn 0211 1、线线 性性 规规 划划 (续(续1.31.3)大大M法:法:引入人工变量 xn+i 0 i=1,m;充分大正数 M。得到,Max z=c1 x1+c2 x2+cn xn +M xn+1+M xn+m s.t.a11 x1+a12 x2+a1n xn+xn+1=b1 a21 x1+a22 x2+a2n xn+xn+2=b2 am1 x1+am2 x2+amn xn+xn+m=bm x1,x2,xn ,xn+1,xn+m 0显然,显然,xj=0 j=1,n;xn+i=bi i=1,m
17、 是基本可行解 对应的基是单位矩阵。结论:若得到的最优解满足结论:若得到的最优解满足 xn+i=0 i=1,m 则是原问题的最优解;否则,原问题无可行解。221 1、线线 性性 规规 划划 (续(续1.31.3)两阶段法:两阶段法:引入人工变量 xn+i 0,i=1,m;构造,Max z=-xn+1-xn+2-xn+m s.t.a11 x1+a12 x2+a1n xn+xn+1=b1 a21 x1+a22 x2+a2n xn+xn+2=b2 am1 x1+am2 x2+amn xn+xn+m=bm x1,x2,xn ,xn+1,xn+m 0第一阶段求解上述问题:第一阶段求解上述问题:显然,显然
18、,xj=0 j=1,n;xn+i=bi i=1,m 是基本可行解 对应的基是单位矩阵。结论:若得到的最优解满足结论:若得到的最优解满足 xn+i=0 i=1,m 则是原问题的基本可行解;否则,原问题无可行解。得到原问题的基本可行解后,第二阶段求解原问题。得到原问题的基本可行解后,第二阶段求解原问题。231 1、线线 性性 规规 划划 (续(续1.31.3)例题)例题 例:(LP)Max z=5 x1+2 x2+3 x3-x4 s.t.x1+2 x2+3 x3 =15 2 x1+x2+5 x3 =20 x1+2 x2+4 x3 +x4 =26 x1,x2,x3,x4 0大M法问题(LP-M)Ma
19、x z=5 x1+2 x2+3 x3-x4 -M x5-M x6 s.t.x1+2 x2+3 x3 +x5 =15 2 x1+x2+5 x3 +x6=20 x1+2 x2+4 x3 +x4 =26 x1,x2,x3,x4,x5,x6 0两阶段法:第一阶段问题(LP-1)Max z=-x5-x6 s.t.x1+2 x2+3 x3 +x5 =15 2 x1+x2+5 x3 +x6=20 x1+2 x2+4 x3 +x4 =26 x1,x2,x3,x4,x5,x6 0241 1、线线 性性 规规 划划 (续(续1.31.3)两阶段法例)两阶段法例第一阶段第一阶段 (LP-1)得到原问题的基本可行解:
20、(0,15/7,25/7,52/7)T 251 1、线线 性性 规规 划划 (续(续1.31.3)两阶段法例)两阶段法例第二阶段第二阶段 把基本可行解填入表中 得到原问题的最优解:(25/3,10/3,0,11)T 最优目标值:112/3261 1、线线 性性 规规 划划 (续(续1.31.3)大)大M M法例法例大大M法法 (LP-M)得到最优解:(25/3,10/3,0,11)T 最优目标值:112/3271 1、线线 性性 规规 划划 (续(续1.31.3)1.3.5 1.3.5 矩阵描述矩阵描述 此段为选读,有此段为选读,有困难者可不看。困难者可不看。1.3.6 1.3.6 段单纯形迭
21、代过程中的几点注段单纯形迭代过程中的几点注意事项是对有关内容的强调和补充,要意事项是对有关内容的强调和补充,要认真学习、理解。认真学习、理解。*习题:p70-71 习题1 1-5,1-6281.4 线性规划应用线性规划应用 建模(建模(p55-68)本节介绍了些线性规划应用的例子,这些例子从多个方面介绍建模对未来本节介绍了些线性规划应用的例子,这些例子从多个方面介绍建模对未来是很有用的,应认真对待。是很有用的,应认真对待。除了教材上的例子之外,还有许多其它应用:*合理利用线材问题:如何下料使用材最少*配料问题:在原料供应量的限制下如何获取最大利润*投资问题:从投资项目中选取方案,使投资回报最大
22、*产品生产计划:合理利用人力、物力、财力等,使获利最大*劳动力安排:用最少的劳动力来满足工作的需要*运输问题:如何制定调运方案,使总运费最小 *下面是一些建模的例子,有兴趣者,可作为练习。这些例子有一定的难度,做下面是一些建模的例子,有兴趣者,可作为练习。这些例子有一定的难度,做起来会有一些困难。起来会有一些困难。*习题:p72-73 习题1 1-7,1-8,1-9,1-101 1、线线 性性 规规 划划 (续(续1.41.4)返回目录29例某昼夜服务的公交线路每天各时间段内所需司机和乘务人员数如下:设司机和乘务人员分别在各时间段一开始时上班,并连续工作八小时,问该公交线路怎样安排司机和乘务人
23、员,既能满足工作需要,又配备最少司机和乘务人员?例:人力资源分配的问题例:人力资源分配的问题30解:设 xi 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函数:Min x1+x2+x3+x4+x5+x6 约束条件:s.t.x1+x6 60 x1+x2 70 x2+x3 60 x3+x4 50 x4+x5 20 x5+x6 30 x1,x2,x3,x4,x5,x6 0例:人力资源分配的问题(续)例:人力资源分配的问题(续)31 例、明兴公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂
24、铸造才能保证质量。数据如下表。问:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?例:生产计划的问题例:生产计划的问题32解:设 x1,x2,x3 分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数,x4,x5 分别为由外协铸造再由本公司机加工和装配的甲、乙两种产品的件数。求 xi 的利润:利润=售价-各成本之和可得到 xi(i=1,2,3,4,5)的利润分别为15、10、7、13、9元。这样我们建立如下的数学模型。目标函数:Max 15x1+10 x2+7x3+13x4+9x5 约束条件:s.t.5x1+10 x2+7x3
25、 8000 6x1+4x2+8x3+6x4+4x5 12000 3x1+2x2+2x3+3x4+2x5 10000 x1,x2,x3,x4,x5 0例:生产计划的问题(续)例:生产计划的问题(续)33例、永久机械厂生产、三种产品,均要经过A、B 两道工序加工。假设有两种规格的设备A1、A2能完成 A 工序;有三种规格的设备B1、B2、B3能完成 B 工序。可在A、B的任何规格的设备上加工;可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;只能在A2与B2设备上加工;数据如下表。问:为使该厂获得最大利润,应如何制定产品加工方案?例:生产计划的问题(续)例:生产计划的问题(续)34解:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学 研究生 概述 课件
限制150内