植物生理学-第5章-光合作用课件.ppt
《植物生理学-第5章-光合作用课件.ppt》由会员分享,可在线阅读,更多相关《植物生理学-第5章-光合作用课件.ppt(116页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 CO2+H2O (CH2O)+O2光能光能叶绿体叶绿体 厂房厂房叶绿体叶绿体动力动力光能光能原料原料二氧化碳和水二氧化碳和水产物产物有机物和氧有机物和氧第五章第五章 植物的光合作用植物的光合作用本章主要内容本章主要内容第一节第一节 光合作用及其重要性光合作用及其重要性第二节第二节 光合色素光合色素第三节第三节 光合作用的机制光合作用的机制第四节第四节 光呼吸光呼吸第五节第五节 同化物的运输与分配同化物的运输与分配第六节第六节 影响光合作用的因素影响光合作用的因素第七节第七节 光合作用与作物生产光合作用与作物生产第一节第一节 光合作用及其重要性光合作用及其重要性一、碳素同化作用一、碳素同化作用
2、(Carbon assimilation)v自养植物吸收自养植物吸收CO2,将其转变成有机物的过将其转变成有机物的过程称为植物的程称为植物的碳素同化作用碳素同化作用。包括。包括绿色植绿色植物光合作用物光合作用,细菌光合作用,化能合成作,细菌光合作用,化能合成作用三种类型。用三种类型。1、光合作用光合作用(Photosynthesis)光光 CO2+H2O (CH2O)+O2 叶绿体叶绿体 绿色植物绿色植物在在光光下,把下,把二氧化碳和水二氧化碳和水转化为转化为糖糖,并释放出并释放出氧气氧气的过程。的过程。其实质是一个氧化还原反应:其实质是一个氧化还原反应:H2O是电子供体(还原剂),被氧化到是
3、电子供体(还原剂),被氧化到O2的水平;的水平;CO2是电子受体(氧化剂),被还原到糖的水平。是电子受体(氧化剂),被还原到糖的水平。2、细菌光合作用、细菌光合作用(Bacterial photosynthesis)光、叶绿素光、叶绿素 CO2+H2S CH2O+H2O+S 如:紫色硫细菌如:紫色硫细菌 3、化能合成作用化能合成作用(Chemosynthesis)化能合成细菌化能合成细菌 水生植物光合作用产生的氧气在叶片表面形成气泡水生植物光合作用产生的氧气在叶片表面形成气泡 二、光合作用的重要性二、光合作用的重要性 1、将无机物转变成有机物、将无机物转变成有机物地球上自养植物一年同化的碳素约
4、为地球上自养植物一年同化的碳素约为21011吨吨 2、将光能转变成化学能、将光能转变成化学能绿色植物是一个巨型能量转换站绿色植物是一个巨型能量转换站 3、维持大气中、维持大气中O2和和CO2的相对平衡的相对平衡 the Nobel prize about photosynthesis:Richard Martin Willstatter,Chemistry,1915,research on chlorophyll and other plant pigmentsPaul Karrer ,Chemistry,1937,carotenoids,flavins and vitamins Richar
5、d Kuhn,Chemistry,1938,won for additional work on carotenoids and vitamins Severo Ochoa,Physiology or Medicine,1959,enzymatic processes in biological oxidation and synthesis and the transfer of energy.Melvin Calvin,Chemistry,1961,won for his work on carbon dioxide assimilation in photosynthesis Rober
6、t Burns Woodward,Chemistry,1965,the total synthesis of chlorophyll,vitamin B12 and other natural products Peter D.Mitchell,Chemistry,1978,the chemiosmotic theoryPaul Boyer,Chemistry,1997,ATP synthase外膜外膜内膜内膜基质基质基粒基粒类囊体垛叠的生理意义:类囊体垛叠的生理意义:使捕光机构高度密集;使酶合理使捕光机构高度密集;使酶合理排列,形成一个长的代谢传递带,排列,形成一个长的代谢传递带,利于代谢进
7、行利于代谢进行第二节第二节 叶绿体和光合色素叶绿体和光合色素一、叶绿体的结构和成分一、叶绿体的结构和成分1 1、结结构构2 2、叶绿体的成分、叶绿体的成分水分水分 75%75%干物质干物质蛋白质蛋白质 303045%45%脂质脂质 202040%40%色素色素 8%8%无机盐无机盐 10%10%贮藏物贮藏物 101020%20%二、光合色素二、光合色素(一)分类(一)分类 叶绿素叶绿素:类胡萝卜素类胡萝卜素=3:1 叶绿素叶绿素a:叶绿素叶绿素b=3:1 叶黄素叶黄素:胡萝卜素胡萝卜素=2:1,所以叶片一般呈绿色,所以叶片一般呈绿色叶黄素叶黄素:胡萝卜素胡萝卜素:叶绿素叶绿素b:叶绿素叶绿素a
8、:2、类胡萝卜素、类胡萝卜素 1、叶绿素、叶绿素光合色素光合色素蓝绿色蓝绿色黄绿色黄绿色橙黄色橙黄色黄色黄色3、藻胆素、藻胆素藻红素藻红素藻蓝素藻蓝素 解释解释:霜叶红于二月花霜叶红于二月花秋天气温降低,叶绿素秋天气温降低,叶绿素降解,类胡萝卜素较稳降解,类胡萝卜素较稳定定叶变黄;植株体内叶变黄;植株体内积累较多糖分以适应寒积累较多糖分以适应寒冷,糖转化成花色素苷冷,糖转化成花色素苷叶子变红。叶子变红。(二)光合色素的结构与性质(二)光合色素的结构与性质1 1、叶绿素(、叶绿素(叶绿素叶绿素a、b)(1 1)化学性质:)化学性质:叶绿酸的酯,不溶于水,叶绿酸的酯,不溶于水,易溶于易溶于酒精、酒
9、精、丙酮、乙醚、氯仿、丙酮、乙醚、氯仿、石油醚等有机溶剂。石油醚等有机溶剂。(2 2)功能:)功能:绝大部分的叶绿素绝大部分的叶绿素a a和全部叶绿素和全部叶绿素b b 具有吸收和传递光能的作用。极少数特殊具有吸收和传递光能的作用。极少数特殊 状态的叶绿素状态的叶绿素a a可将光能转变为电能。可将光能转变为电能。(3 3)结构:)结构:叶绿素b以CHO 代替CH3叶绿素a的结构式CH34个吡咯环和个吡咯环和4个甲烯基个甲烯基连成一个大环连成一个大环卟卟啉环啉环镁原子居卟啉环的中央镁原子居卟啉环的中央1个含羰基和羧基的副个含羰基和羧基的副环(同素环环(同素环),羧),羧基以酯键和甲醇结合基以酯键
10、和甲醇结合叶绿醇则以酯键与在叶绿醇则以酯键与在第第吡珞环侧键上的吡珞环侧键上的丙酸结合丙酸结合庞大的共轭体系庞大的共轭体系,起着吸收起着吸收光能光能,传递电子传递电子,以以诱导共振诱导共振的方式传递能量的方式传递能量极极性性头头部部疏疏水水尾尾部部H+,Cu2+可取代可取代Mgv卟啉环中的镁可被卟啉环中的镁可被H H+所所置换。当为置换。当为H H所置换后,即所置换后,即形成形成褐色的去镁叶绿素褐色的去镁叶绿素。v去镁叶绿素中的去镁叶绿素中的H H再被再被CuCu2+2+取代,就形成取代,就形成铜代叶绿铜代叶绿素素,颜色比原来的叶绿素更,颜色比原来的叶绿素更鲜艳稳定。鲜艳稳定。v根据这一原理可
11、用醋酸根据这一原理可用醋酸铜处理来保存绿色标本。铜处理来保存绿色标本。铜代叶绿素反应铜代叶绿素反应向叶绿素溶液向叶绿素溶液中放入两滴中放入两滴5 5盐酸摇匀,盐酸摇匀,溶液颜色的变溶液颜色的变为褐色,形成为褐色,形成去镁叶绿素。去镁叶绿素。当溶液变褐当溶液变褐色后,投入色后,投入醋酸铜粉末,醋酸铜粉末,微微加热,微微加热,形成铜代叶形成铜代叶绿素绿素制作绿色标本方法:制作绿色标本方法:制作绿色标本方法:制作绿色标本方法:用用50%50%醋酸溶液配制的饱醋酸溶液配制的饱和醋酸铜溶液浸渍植物标和醋酸铜溶液浸渍植物标本本(处理时可加热处理时可加热)2 2、类胡萝卜素(、类胡萝卜素(胡萝卜素、叶黄素)
12、胡萝卜素、叶黄素)(1 1)化学性质:)化学性质:不溶于水,溶于有机溶剂。不溶于水,溶于有机溶剂。(3 3)功能:)功能:吸收和传递光能,保护叶绿素吸收和传递光能,保护叶绿素免受强光氧化。免受强光氧化。胡萝卜素在动物体内转变为维生素胡萝卜素在动物体内转变为维生素A,可预防和治疗夜盲症。,可预防和治疗夜盲症。(2 2)结构:)结构:不饱和碳氢化合物。不饱和碳氢化合物。-胡萝卜素叶黄素-胡萝卜素和叶黄素结构式(三)光合色素的吸收光谱(三)光合色素的吸收光谱1 1、对光合有效的可见光波长为、对光合有效的可见光波长为400400700 nm 700 nm。2 2、太阳光的连续光谱、太阳光的连续光谱 (
13、白光经三棱镜后形成白光经三棱镜后形成)光子携带的能量与光的波长成反比光子携带的能量与光的波长成反比 E=N h c/3 3、吸收光谱:、吸收光谱:光合色素将太阳连续光谱中光合色素将太阳连续光谱中 有些波长的光吸收,在光谱上出现黑线有些波长的光吸收,在光谱上出现黑线 或暗带,这种光谱叫或暗带,这种光谱叫吸收光谱吸收光谱。类胡萝卜素类胡萝卜素的最大吸收带的最大吸收带在蓝紫光区在蓝紫光区,不吸不吸收红光等长波光。收红光等长波光。叶绿素有叶绿素有2 2个个最强吸收区最强吸收区:640640660nm660nm的红光区的红光区430450nm的蓝紫光区的蓝紫光区叶绿素溶液呈叶绿素溶液呈绿色绿色。藻胆素的
14、吸收峰主要在藻胆素的吸收峰主要在500650nm之间。之间。叶绿素b叶绿素a叶绿素a和叶绿素b在乙醇溶液中的吸收光谱叶绿素的吸收光谱叶绿素的吸收光谱叶绿素的吸收光谱叶绿素的吸收光谱-胡萝卜素和叶黄素的吸收光谱叶黄素-胡萝卜素/nm(四)荧光现象和磷光现象(四)荧光现象和磷光现象荧光现象荧光现象:叶绿素溶液在透射光下呈绿色,而在反叶绿素溶液在透射光下呈绿色,而在反射光下呈红色的现象。射光下呈红色的现象。10-810-9秒秒(寿命短寿命短)磷光现象磷光现象:叶绿素除了在照光时能辐射出荧光外,叶绿素除了在照光时能辐射出荧光外,当去掉光源后,还能继续辐射出极微弱的红光,这个当去掉光源后,还能继续辐射出
15、极微弱的红光,这个现象叫现象叫。10-2秒秒(寿命长寿命长)这两种现象说明叶绿素能被光激发,而被光激发这两种现象说明叶绿素能被光激发,而被光激发是光能转变为化学能的第一步。是光能转变为化学能的第一步。色素分子吸收光子后能量转变色素分子吸收光子后能量转变对提取的叶绿体色素浓溶液照光,对提取的叶绿体色素浓溶液照光,在与入射光垂直的方向上可观察到呈在与入射光垂直的方向上可观察到呈暗红色的荧光。暗红色的荧光。因为溶液中缺少能量受体或电子受因为溶液中缺少能量受体或电子受体的缘故。体的缘故。荧光猝灭剂:荧光猝灭剂:在色素溶液中,如加在色素溶液中,如加入某种受体分子,能使荧光消失。常入某种受体分子,能使荧光
16、消失。常用用Q Q表示。在光合作用的光反应中,表示。在光合作用的光反应中,Q Q即为电子受体。即为电子受体。色色素素发发射射荧荧光光的的能能量量与与用用于于光光合合作作用用的的能能量量是是相相互互竞竞争争的的,这这就就是是叶叶绿绿素素荧荧光光常常常常被被认认作作光光合合作作用用无无效效指指标标的依据。的依据。离体色素溶液为什么易发荧光?离体色素溶液为什么易发荧光?谷氨酸或谷氨酸或-酮戊二酸酮戊二酸氨基酮戊二酸氨基酮戊二酸(ALA)2ALA 含吡咯环的胆色素原(含吡咯环的胆色素原(PBG)4个胆色素原个胆色素原 原卟啉原卟啉 镁原卟啉镁原卟啉 单乙烯基原叶绿素酯单乙烯基原叶绿素酯a 叶绿素酯叶绿
17、素酯a 叶绿素叶绿素a 叶绿素叶绿素b叶绿素与血红素有共同的前期合成途径叶绿素与血红素有共同的前期合成途径推断:动植物有共同的起源推断:动植物有共同的起源光光(五)叶绿素的生物合成及其与环境条件的关系(五)叶绿素的生物合成及其与环境条件的关系1 1、叶绿素的生物合成、叶绿素的生物合成 (4 4个阶段个阶段)2 2、影响叶绿素形成的条件、影响叶绿素形成的条件(1 1)光)光 光是影响叶绿素形成的主要条件。光是影响叶绿素形成的主要条件。从从原原叶叶绿绿素素酸酸酯酯转转变变为为叶叶绿绿酸酸酯酯需需要要光光,而而光光过过强强,叶叶绿绿素素又又会会受受光光氧氧化而破坏。化而破坏。黑黑暗暗中中生生长长的的
18、幼幼苗苗呈呈黄黄白白色色,遮遮光光或或埋埋在在土土中中的的茎茎叶叶也也呈呈黄黄白白色色。这这种种因因缺缺乏乏某某些些条条件件而而影影响响叶叶绿绿素素形形成成,使叶子发黄的现象,称为使叶子发黄的现象,称为黄化现象黄化现象。黑黑暗暗使使植植物物黄黄化化的的原原理理常常被被应应用用于于蔬蔬菜菜生生产产中中,如如韭韭黄黄、软软化化药药芹芹、白白芦芦笋笋、豆豆芽芽菜菜、葱葱白白、蒜蒜白白、大大白白菜菜等生产。等生产。(2)(2)温度温度 高高温温下下叶叶绿绿素素分分解解大大于于合合成成,因因而而夏夏天天绿绿叶叶蔬蔬菜菜存存放放不不到到一一天天就就变变黄黄;相相反反,温温度度较较低低时时,叶叶绿绿素素解解
19、体体慢慢,这也是低温保鲜的原因之一这也是低温保鲜的原因之一 叶绿素的生物合成是一叶绿素的生物合成是一系列系列酶促反应,受温度酶促反应,受温度影响影响。叶绿素形成的最低温度叶绿素形成的最低温度约约22,最适温度约,最适温度约30,30,最高温度约最高温度约40 40。受冻的油菜受冻的油菜秋天叶子变黄和早春寒潮过后秧苗变白,都与低温秋天叶子变黄和早春寒潮过后秧苗变白,都与低温抑制叶绿素形成有关。抑制叶绿素形成有关。(3)(3)矿质元素元素 氮和镁氮和镁是叶绿素的组成成分,是叶绿素的组成成分,铁、锰、铜、锌铁、锰、铜、锌等是等是叶绿素叶绿素酶促合成的辅因子。酶促合成的辅因子。因此,缺少这些元素时都会
20、引起因此,缺少这些元素时都会引起缺绿症缺绿症缺绿症缺绿症,其中尤以,其中尤以氮的影响最大。氮的影响最大。缺缺N N老老叶叶发发黄黄枯枯死死,新新叶叶色色淡淡,生生长长矮矮小,根系细长,分枝(蘖)减少小,根系细长,分枝(蘖)减少缺NCK萝卜缺萝卜缺N的植株老叶发黄的植株老叶发黄缺N棉花缺棉花缺棉花缺棉花缺MgMg网状脉网状脉网状脉网状脉苹果缺苹果缺苹果缺苹果缺FeFe新叶脉间失绿新叶脉间失绿新叶脉间失绿新叶脉间失绿黄瓜缺锰叶脉间黄瓜缺锰叶脉间黄瓜缺锰叶脉间黄瓜缺锰叶脉间失绿失绿失绿失绿柑桔缺柑桔缺柑桔缺柑桔缺ZnZn小叶症小叶症小叶症小叶症 伴脉间失绿伴脉间失绿伴脉间失绿伴脉间失绿(4 4)水分
21、:)水分:缺水抑制叶绿素的生物合成,严重缺水缺水抑制叶绿素的生物合成,严重缺水时,加速叶绿素的降解,所以干旱时叶片呈时,加速叶绿素的降解,所以干旱时叶片呈黄褐色。黄褐色。(5 5)氧气)氧气 缺氧会影响叶绿素的生物合成;光能缺氧会影响叶绿素的生物合成;光能 过剩时,氧引起叶绿素的光氧化。过剩时,氧引起叶绿素的光氧化。(6)(6)遗传遗传 叶绿素的形成受遗传因素控叶绿素的形成受遗传因素控制,如水稻、玉米的白化苗以及制,如水稻、玉米的白化苗以及花卉中的斑叶不能合成叶绿素。花卉中的斑叶不能合成叶绿素。有些病毒也能引起斑叶。有些病毒也能引起斑叶。吊兰吊兰吊兰吊兰海棠海棠海棠海棠问题:问题:指出植物有哪
22、些黄化现象,并分析产生的原因。指出植物有哪些黄化现象,并分析产生的原因。花叶花叶花叶花叶植植物物体体内内的的叶叶绿绿素素在在代代谢谢过过程程中中一一方方面面合合成成,一一方方面面分分解解,在在不不断断地地更更新新。如如环环境境不不适适宜宜,叶叶绿绿素素的的形形成成就就受受到到影影响响,而而分解过程仍然进行,因而茎叶发黄,光合速率下降。分解过程仍然进行,因而茎叶发黄,光合速率下降。农农业业生生产产中中,许许多多栽栽培培措措施施如如施施肥肥,合合理理密密植植等等的的目目的的就就是是促促进进叶叶绿绿素素的的形形成成,延延缓缓叶叶绿绿素素的的降降解解,维维持持作作物物叶叶片片绿绿色色,使之更多地吸收光
23、能,用于光合作用,生产更多的有机物。使之更多地吸收光能,用于光合作用,生产更多的有机物。叶绿素是一种酯,因此不叶绿素是一种酯,因此不溶于水。溶于水。通常用含有少量水的通常用含有少量水的有机溶剂如有机溶剂如80808080的丙酮的丙酮的丙酮的丙酮,或者,或者95%95%95%95%乙醇乙醇乙醇乙醇,或,或丙酮丙酮丙酮丙酮乙醇乙醇乙醇乙醇水水水水4.54.514.54.514.54.514.54.51的混合液来提的混合液来提取叶片中的叶绿素,用于测定取叶片中的叶绿素,用于测定叶绿素含量叶绿素含量。之所以要用含之所以要用含有水的有机溶剂提取叶绿素,有水的有机溶剂提取叶绿素,这是因为叶绿素与蛋白质结合
24、这是因为叶绿素与蛋白质结合牢,需要经过水解作用才能被牢,需要经过水解作用才能被提取出来。提取出来。叶绿素的提取叶绿素的提取研磨法提取研磨法提取研磨法提取研磨法提取光合色素光合色素光合色素光合色素提取方法提取方法提取方法提取方法研磨法研磨法浸提法浸提法0.1g0.1g叶叶+10ml+10ml混合液浸提混合液浸提一、原初反应一、原初反应二、电子传递与光合磷酸化二、电子传递与光合磷酸化三、碳同化三、碳同化四、光合作用的产物四、光合作用的产物第三节第三节 光合作用的机制光合作用的机制光合作用可分为三个阶段光合作用可分为三个阶段:原初反应:光能原初反应:光能电能电能 光反光反应应电子传递和光合磷酸化:电
25、能电子传递和光合磷酸化:电能活跃的化学能活跃的化学能 光反应光反应碳同化:活跃的化学能碳同化:活跃的化学能 稳定的化学能稳定的化学能 碳反应碳反应 光反应在类囊体(光合膜)上进行光反应在类囊体(光合膜)上进行 碳反应在叶绿体的基质中进行碳反应在叶绿体的基质中进行根据需光情况,将光合作用分为两个反应:根据需光情况,将光合作用分为两个反应:光反应和暗反应(碳反应)光反应和暗反应(碳反应)原初反应电子传递和光合磷酸化碳同化光反应碳反应一、原初反应一、原初反应(Primary reaction)(一一)概念概念 光合色素分子对光能的吸收、传递光合色素分子对光能的吸收、传递 和转换过程。和转换过程。原初
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 植物 生理学 光合作用 课件
限制150内