利用SPSS软件分析变量间的相关性(1).pdf
《利用SPSS软件分析变量间的相关性(1).pdf》由会员分享,可在线阅读,更多相关《利用SPSS软件分析变量间的相关性(1).pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、利用SPSS软件分析变量间的相关性孙逸敏3(新疆兵团广播电视大学,新疆 乌鲁木齐 830001)摘 要:通过描述相关分析的研究意义、概念、分类以及利用SPSS软件进行变量间相关性分析的举例,说明了利用SPSS软件分析变量间的相关性,可以使我们了解事物之间的密切程度,并给事物之间的关系做出定性的分析。关键词:相关分析;SPSS软件;二变量过程;相关系数;显著性差异中图分类号:TP3 文献标识码:A 文章编号:10083588(2007)02-0120-04 一、引言任何事物的存在都不是孤立的,而是相互联系、相互制约的。为了描述这些事物之间的关系,人们用变量来表示事物的数量特征,这些事物之间的关系
2、可以转化为变量之间的关系。通常我们把变量之间的关系归纳为两种类型:函数关系和统计关系。函数关系是一一对应的确定性关系即线性关系,比较容易分析和测量,可是在现实生活中,变量之间的关系往往并不那么简单。比如,职业种类和收入、家庭收入和支出、一个人所受教育程度预期收入、子女身高和父母身高等,它们之间确定存在某种关系,但这些关系却无法像函数那样能够用一个确定的函数公式来描述。这样,一个变量的值不能由另一个变量的值来唯一确定,这种关系叫做统计关系。事物之间的统计关系不像函数关系那样直接,但通过大量数据的观察和研究,可以发现这些变量之间确实存在着某种统计关系,有的关系强,有的关系弱,程度各有差异。那么,如
3、何测度事物间统计关系的强弱程度呢?相关分析为我们提供了答案。二、什么是相关分析衡量事物之间或称变量之间线性相关程度的强弱,并用适当的统计指标表示出来,这个过程就是相关分析。它是研究变量间密切程度的一种常用统计方法。根据变量之间的不同情况,它分为三类:11 线性相关分析。研究两个变量间线性关系的程度。相关系数是描述这种线性关系程度和方向的统计量,用r来描述。如果变量Y与X间是函数关系,则r=1或r=-1;如果变量Y与X间是统计关系,则-1 r 0;如果x,y变化的方向相反,如吸烟与肺功能的关系,则称为负相关,则r 0.95存在显著性相关;|r|(0.8高度相关;0.5|r|0.8中度相关;0.3
4、|r|0.5低度相关;|r|0.3关系极弱,认为不相关。相关系数的计算有三种:Pearson、Spearman和Kendall。Pearson相关系数:对定距变量的数据进行计算。公式为:r=ni=1(xi-x)(yi-y)ni=1(xi-x)2ni=1(yi-y)2其中,r为相关系数;x、y分别是变量x、y的均值;xi、yi分别是变量x、y的第i个观测值。只有正态分布的等隔测度(连续)的变量才使用这种相关分析,它也是SPSS软件系统默认的相关分析方法。Spearman和Kendall相关系数:对分类变量的数据或变量值的分布明显非正态或分布不明时,计算时先对离散数据进行排序或对连续变量的值求秩,
5、在计算其秩分数间的相关系数。021第23卷第2期2007年6月 新 疆 教 育 学 院 学 报 JOURNAL OF XINJ IANG EDUCA TION INSTITU TEVol.23,No.2Jun.20073收稿日期2007-01-05作者简介 孙逸敏(1978-),女,上海市人,新疆兵团广播电视大学讲师。21 偏相关分析。当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程。如一个量表中,控制现任职务和现任技术职称两个变量的影响,估计政治面貌与完成科研项目变量之间的相关关系。31 距离相关分析。是对观测量之间或变量之间相似或不相似程度的一
6、种测量。它用于同一变量内部各个取值间,以考察其相互接近程度;也可用于变量间,以考察预测值对实际值的拟合优度。通过人工来计算这些复杂的运算比较麻烦,但利用计算机软件来对调查问卷进行相关分析却轻而易举,我们可以使用目前比较常用的SPSS软件进行相关性分析。上面介绍的三类相关分析的功能集中于SPSS软件中“分析”菜单下的“相关分析”子菜单中,它一般包括以下三个过程。二变量(Bivariate)过程此过程用于进行两个(多个)变量间的参数(非参数)相关分析,如果是多个变量,则给出两两相关的分析结果。这是“相关分析”子菜单中最为常用的一个过程,我们对它的使用可能占到相关分析的95%以上。下面介绍的利用SP
7、SS软件进行变量的相关性分析也是以该过程为主。偏相关(Partial)过程如果需要进行相关分析的两个变量其取值均受到其他变量的影响,就可以利用偏相关分析对其他变量进行控制,输出控制其他变量影响后的相关系数,这种分析思想和协方差分析非常类似。距离(Distances)过程调用此过程可对同一变量内部各观测量之间的数值或各个不同变量间进行距离相关分析。该过程在实际应用中用的比较少。下面就谈谈二变量过程在调查问卷中不同项目之间相关性程度研究的应用。三、利用SPSS软件进行变量的相关性分析举例11 调查方法与工具(1)被测试对象。对兵团电大开放教育(成人本专科)2002年至2004年毕业的近一千名已毕业
8、学生的用人单位进行问卷调查,采用两次分层等距抽样的随机抽样方法,回收“人才培养模式改革和开放教育试点”毕业生追踪调查中的调查表(用人单位用)626份。根据项目内部一致性的分析,各个维度的信度系数均大于0.8或接近0.8,说明各个纬度具有较好的内部一致性,问卷具有良好的信度(问卷总的内部一致性信度系数:Alpha=.9360)。(2)研究方法。采用调查问卷的方法对某些变量之间密切关系进行分析。下面就以兵团广播电视大学“人才培养模式改革和开放教育试点”毕业生追踪调查中的调查表(用人单位用)进行问卷调查。调查表主要包括三个部分:毕业生基本情况表、质量评价表和综合评价表。在这里主要讨论毕业生不同背景情
9、况的相关分析,所以只用毕业生基本情况表(如下所示)即可。a.现任职务;(局级;处级;科级;普通职员;其他)b.技术职称;(高级;中级;初级;其他)c.政治面貌;(共产党员;共青团员;群众;各民主党派;其他)d.工作中的主要角色;(主持或专家;业务骨干;一般成员)e.年终考核成绩;(优秀;优良;合格;不合格)f.职务职称是否晋升;(是;否)g.通过学习获得何种奖励;(省部级;地市级;县级;本单位;无)h.发表或出版的研究成果;(专著;论文;文艺作品;译文;文章报纸;无)i.完成的技术革新或科研项目。(省部级;地市级;县级;本单位;无)毕业生基本情况表 通过毕业生基本情况表,我们可以进行毕业生不同
10、背景情况的分析,如政治面貌与年终考核成绩的关系、技术职称与发表或出版研究成果的关系等。(3)相关系数显著性差异的统计意义。由于抽样误差的存在,样本中两个变量间相关系数不为0,不能说明总体中这两个变量间的相关系数不是0,因此必须经过检验。检验的零假设是总体中两个变量间的相关系数为0。SPSS的相关分析过程给出了该假设成立的概率,公式如下:t=n-2r1-r2(r是相关系数,n是样本观测量数,n-2是自由度)当相关系数检验的t统计量的显著性概率p 0.05时,说明两个变量间相关性显著,通常在概率值上方用“3”表示;当p 0.05时,说明两个变量间没有显著的相关关系,只显示概率值。21 数据处理下面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用 SPSS 软件 分析 变量 相关性
限制150内