(完整版)椭圆与双曲线常见题型归纳.doc
《(完整版)椭圆与双曲线常见题型归纳.doc》由会员分享,可在线阅读,更多相关《(完整版)椭圆与双曲线常见题型归纳.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 椭圆与双曲线常见题型归纳一. “曲线方程+直线与圆锥曲线位置关系”的综合型试题的分类求解1.向量综合型例1.在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线与交于两点。()写出的方程; ()若,求的值。例1. 解:()设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆它的短半轴,故曲线C的方程为()设,其坐标满足 消去y并整理得,故若,即而,于是,化简得,所以例2设、分别是椭圆的左、右焦点.()若是该椭圆上的一个动点,求的最大值和最小值;()设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围例2解:()解法一:易知所以,设
2、,则因为,故当,即点为椭圆短轴端点时,有最小值当,即点为椭圆长轴端点时,有最大值解法二:易知,所以,设,则(以下同解法一)()显然直线不满足题设条件,可设直线,联立,消去,整理得:由得:或又又,即 故由、得或例3 设、分别是椭圆的左、右焦点,()若是该椭圆上的一个动点,求的最大值和最小值;()若C为椭圆上异于B一点,且,求的值;()设P是该椭圆上的一个动点,求的周长的最大值. 例3解:()易知,所以,设,则 因为,故当,即点为椭圆短轴端点时,有最小值当,即点为椭圆长轴端点时,有最大值 ()设C(), 由得,又 所以有解得 ()因为|P|PB|4|PF2|PB|4|BF2|周长4|BF2|B|8
3、所以当P点位于直线BF2与椭圆的交点处时,周长最大,最大值为8例4已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1) 求双曲线C的方程;(2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。例4解:()设双曲线方程为 由已知得故双曲线C的方程为()将 由直线l与双曲线交于不同的两点得即 设,则而于是 由、得 故k的取值范围为例5已知椭圆(ab0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为(1)求椭圆的方程(2)已知定点E(-1,0),若直线ykx2(k0)与椭圆交于C、D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 椭圆 双曲线 常见 题型 归纳
限制150内