电力系统分析英文课件OptimalDispatch.pdf
《电力系统分析英文课件OptimalDispatch.pdf》由会员分享,可在线阅读,更多相关《电力系统分析英文课件OptimalDispatch.pdf(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 Instructor:Kai Sun Fall 2014 ECE 421/599 Electric Energy Systems 7 Optimal Dispatch of Generation 2 Background In a practical power system,the costs of generating and delivering electricity from power plants are different(due to fuel costs and distances to load centers)Under normal conditions,the
2、system generation capacity is more than the total load demand and losses.Thus,there is room to schedule generation within capacity limits Minimizing a cost function that represents,e.g.Operating costs Transmission losses System reliability impacts This is called Optimal Power Flow(OPF)problem A typi
3、cal problem is the Economic Dispatch(ED)of real power generation 3 Introduction of Nonlinear Function Optimization Unconstrained parameter optimization Constrained parameter optimization Equality constraints Inequality constraints 4 Unconstrained parameter optimization Minimize cost function 1.Solve
4、 all local minima satisfying two conditions(necessary&sufficient)Condition-1:Gradient vector Condition-2:Hessian matrix H is positive definite 2.Find the global minimum from all local minima 12(,)nf x xx12(,)nffffxxx=0Stationary point (where f is flat in all directions)Local minimum(a pure source in
5、 f vector field)5 f(x,y)=(cos2x+cos2y)2 6 Minimize f(x,y)=x2+y2(,)(2,2)0fffxyxy=222222002ffxx yHfy xy=0,0 xy=x y 0 f 7 Parameter Optimization with Equality Constraints Minimize Subject to Introduce Lagrange Multipliers 1 K Necessary conditions for the local minima of L(also necessary for the origina
6、l problem)12(,)nf x xx12(,)0kngx xx=1,2,kK=1KkkiLfg=+10KkkiiiigLfxxx=+=0kkLg=8 f Minimize f(x,y)=x2+y2 Subject to (x-8)2+(y-6)2=25 Solutions(from the N-R method):=1,x=4 and y=3 (f=25)=3,x=12 and y=9 (f=225)x y 0 8 6 2222(8)(6)25Lxyxy=+2(216)0Lxxx=+=2(212)0Lyyy=+=22(8)(6)250Lxy=+=g(x,y)=(x-8)2+(y-6)2
7、-25=0 9 Parameter Optimization with Inequality Constraints Minimize Subject to:Introduce Lagrange Multipliers 1 K and 1 m Necessary conditions for the local minima of L 12(,)nf x xx12(,)0kngx xx=1,2,kK=0kkLg=12(,)0jnux xx1,2,jm=11KmkkjjkjLfgu=+1,in=1,2,kK=0jjLu=1,jm=0jju=0jKuhn-Tucker(KKT)necessary
8、condition 110KmjkkjijiiiiugLfxxxx=+=10 Minimize f(x,y)=x2+y2 Subject to (x-8)2+(y-6)2=25 g(x,y)=(x-8)2+(y-6)2-25=0 Solutions:=0,=3,x=12 and y=9 (f=225)=5.6,=-0.2,x=5 and y=2 (f=29)=12,=-1.8,x=3 and y=6 (f=33)x y 0 8 6 2222(8)(6)25(122)Lxyxyxy=+2(216)20Lxxx=+=2(212)0Lyyy=+=22(8)(6)250Lxy=+=212xy+f(,)
9、1220u x yxy=0,0,0jjjLu=1220 0 or 1220 0LxyLxy=11 Operating Cost of a Thermal Plant Fuel-cost curve of a generator(represented by a quadratic function of real power)Incremental fuel-cost curve:2iiiiiiCPP=+2iiiiiidCPdP=+12 A real case Gen ID PRIOR FUELCO($/MBtu)PMAX(MW)PMIN(WM)HEMIN(MBtu/hr)X1(MW)Y1(B
10、tu/kWh)X2(MW)Y2(Btu/kWh)X3(Btu/kWh)Y3(Btu/kWh)A 1 0 1.91 230 65 532 65 8760 176 9507 260 10072 B 2 0 0.539 106 50 425 50 8501 75 9198 106 10341 Btu/h=Xi Yi 1000$/h=Btu/h$/MBtu/1000,000$/MWh =Yi/1000$/MBtu 05010015020025030002468101214161820P(MW)Lambda($/MWh)050100150200250300010002000300040005000600
11、0P(MW)Cost($/h)13 ED Neglecting Losses and No Generator Limits If transmission line losses are neglected,minimize the total production cost:subject to Apply the Lagrange multiplier method(ng+1 unknowns to solve):1gntiiCC=21niiiiiiPP=+1gniDiPP=1()gntDiiLCPP=+00iLPL=0tiCP=2tiiiiiiCdCPPdP=+=1,gin=1gniD
12、iPP=12gniiiDP=11212ggniDiiniiP=+=2iiiP=All plants must operate at equal incremental cost Solve Pi 14 Example 7.4 The fuel-cost functions for three thermal plants are C1C2 in$/h.P1,P2 and P3 are in MW.PD=800MW.Neglecting line losses and generator limits,find the optimal dispatch and the total cost in
13、$/h 2111222223335005.30.0044005.50.0062005.80.009CPPCPPCPP=+=+=+11212ggniDiiniiP=+=5.35.55.88000.0080.0120.0181110.0080.0120.018+=+8001443.05558.5$/MWh263.8889+=1238.55.3400.00002(0.004)8.55.5250.00002(0.006)8.55.8150.00002(0.009)PPP=11115.30.008dCPdP=+22225.50.012dCPdP=+33335.80.018dCPdP=+6682.5$/h
14、tC=2iiiP=Equal incremental cost 15 Solving by the N-R Method For a general case:112ggnniiDiiiPP=()()()()()()kkkDdffPd+1()gniDifPP=()ig P=()()()()1()()()()()()()()()gnkkkDikiDkkkiPPPfPdfdfdPddd=(1)()()kkk+=+(1)()|kk+until 16 05010015020025030035040045055.566.577.588.599.51010.511P(MW)$/MWhApply the R
15、-N Method in Example 7.4(1)6.0=(1)16.05.387.50002(0.004)P=()()2kkiiiP=(1)2(1)36.05.541.66672(0.006)6.05.811.11112(0.009)PP=(1)800(87.541.666711.1111)659.7222P=+=(1)659.72221112(0.004)2(0.006)2(0.009)659.7222 2.5263.8888=+=(2)1(2)2(2)3(2)8.55.3400.00002(0.004)8.55.5250.00002(0.006)8.55.8150.00002(0.0
16、09)800(400250150)0.0PPPP=+=()()()()1()2kkkkiiPPdPd=(2)6.02.58.5=+=6682.5$/htC=17 ED Neglecting Losses but Including Generator Limits Considering the maximum(by rating)and minimum(for stability)generation limits,Minimize Subject to (min)(max)1,2,iiigPPPin=,1gntiiCC=21niiiiiiPP=+1gniDiPP=iiiiiiiidCdPd
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力系统 分析 英文 课件 OptimalDispatch
限制150内