((完整版))二次函数图像与性质总结(含答案)-推荐文档.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《((完整版))二次函数图像与性质总结(含答案)-推荐文档.pdf》由会员分享,可在线阅读,更多相关《((完整版))二次函数图像与性质总结(含答案)-推荐文档.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 二次函数的图像与性质二次函数的图像与性质一、二次函数的基本形式一、二次函数的基本形式1.二次函数基本形式:的性质:2yaxa 的绝对值越大,抛物线的开口越小。2.的性质:2yaxc上加下减。3.的性质:2ya xh左加右减。4.的性质:2ya xhk的符号a开口方向顶点坐标对称轴性质0a 向上00,轴y时,随的增大而增大;时,0 x yx0 x 随的增大而减小;时,有最小值yx0 x y00a 向下00,轴y时,随的增大而减小;时,0 x yx0 x 随的增大而增大;时,有最大值yx0 x y0的符号a开口方向顶点坐标对称轴性质0a 向上0c,轴y时,随的增大而增大;时,0 x yx0 x
2、随的增大而减小;时,有最小值yx0 x yc0a 向下0c,轴y时,随的增大而减小;时,0 x yx0 x 随的增大而增大;时,有最大值yx0 x yc的符号a开口方向顶点坐标对称轴性质0a 向上0h,X=h时,随的增大而增大;时,xhyxxh随的增大而减小;时,有最小值yxxhy00a 向下0h,X=h时,随的增大而减小;时,xhyxxh随的增大而增大;时,有最大值yxxhy0的符号a开口方向顶点坐标对称轴性质0a 向上hk,X=h时,随的增大而增大;时,xhyxxh随的增大而减小;时,有最小值yxxhy二、二次函数图象的平移二、二次函数图象的平移 1.平移步骤:方法一:将抛物线解析式转化成
3、顶点式,确定其顶点坐标;2ya xhkhk,保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2yaxhk,【(h0)【(h0)【(k0)【(h0)【(h0)【(k0)【(k0)【|k|【y=a(x-h)2+ky=a(x-h)2y=ax2+ky=ax2 2.平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”hk概括成八个字“左加右减,上加下减”方法二:沿轴平移:向上(下)平移个单位,变成cbxaxy2ymcbxaxy2(或)mcbxaxy2mcbxaxy2沿轴平移:向左(右)平移个单位,变成cbxaxy2mcbxaxy2(或)cmxbmxay)()(2cmxbmxay)
4、()(2 三、二次函数三、二次函数与与的比较的比较2ya xhk2yaxbxc从解析式上看,与是两种不同的表达形式,后者通过2ya xhk2yaxbxc配方可以得到前者,即,其中22424bacbya xaa2424bacbhkaa,k0a 向下hk,X=h时,随的增大而减小;时,xhyxxh随的增大而增大;时,有最大值yxxhyk四、二次函数四、二次函数图象的画法图象的画法2yaxbxc五点绘图法:利用配方法将二次函数化为顶点式,确2yaxbxc2()ya xhk定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的
5、点y0c,0c,、与轴的交点,(若与轴没有交点,则取两组关于对称轴2hc,x10 x,20 x,x对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.xy五、二次函数五、二次函数的性质的性质2yaxbxc 1.当时,抛物线开口向上,对称轴为,顶点坐标为0a 2bxa 2424bacbaa,当时,随的增大而减小;当时,随的增大而增大;当2bxa yx2bxa yx时,有最小值2bxa y244acba 2.当时,抛物线开口向下,对称轴为,顶点坐标为当0a 2bxa 2424bacbaa,时,随的增大而增大;当时,随的增大而减小;当时,2bxa yx2bxa yx2
6、bxa 有最大值y244acba六、二次函数解析式的表示方法六、二次函数解析式的表示方法1.一般式:(,为常数,);2yaxbxcabc0a 2.顶点式:(,为常数,);2()ya xhkahk0a 3.两根式:(,是抛物线与轴两交点的横坐标).12()()ya xxxx0a 1x2xx注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以x240bac用交点式表示二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系七、二次函数的图象与各项系数之间的关系 1.二次项系数a二次函数中,作为二
7、次项系数,显然2yaxbxca0a 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越0a aa大;当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越0a aa大总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决aaa定开口的大小2.一次项系数b 在二次项系数确定的前提下,决定了抛物线的对称轴ab 在的前提下,0a 当时,即抛物线的对称轴在轴左侧;0b 02bay当时,即抛物线的对称轴就是轴;0b 02bay当时,即抛物线对称轴在轴的右侧0b 02bay 在的前提下,结论刚好与上述相反,即0a 当时,即抛物线的对称轴在轴右侧;0b 02bay当时,即抛
8、物线的对称轴就是轴;0b 02bay当时,即抛物线对称轴在轴的左侧0b 02bay总结起来,在确定的前提下,决定了抛物线对称轴的位置ab的符号的判定:对称轴在轴左边则,在轴的右侧则,ababx2y0aby0ab概括的说就是“左同右异”总结:3.常数项c 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c yxy 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c yy0 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为0c yxy负 总结起来,决定了抛物线与轴交点的位置cy 总之,只要都确定,那么这条抛物线就是唯一确定的abc,二次函数解析式的确定:二
9、次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与轴的两个交点的横坐标,一般选用两根式;x4.已知抛物线上纵坐标相同的两点,常选用顶点式八、二次函数图象的对称八、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1.关于轴对称x 关于轴对称后,得到的解析式是;2yaxbxcx2yaxbxc 关于轴对称后,得到的解析式是;2y
10、a xhkx2ya xhk 2.关于轴对称y 关于轴对称后,得到的解析式是;2yaxbxcy2yaxbxc关于轴对称后,得到的解析式是;2ya xhky2ya xhk 3.关于原点对称 关于原点对称后,得到的解析式是;2yaxbxc2yaxbxc 关于原点对称后,得到的解析式是;2ya xhk2ya xhk 4.关于顶点对称(即:抛物线绕顶点旋转 180)关于顶点对称后,得到的解析式是;2yaxbxc222byaxbxca 关于顶点对称后,得到的解析式是2ya xhk2ya xhk 5.关于点对称 mn,关于点对称后,得到的解析式是2ya xhkmn,222ya xhmnk 根据对称的性质,显
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 二次 函数 图像 性质 总结 答案 推荐 文档
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内