2022高一数学教学计划汇编十篇.docx
《2022高一数学教学计划汇编十篇.docx》由会员分享,可在线阅读,更多相关《2022高一数学教学计划汇编十篇.docx(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022高一数学教学计划汇编十篇高一数学教学计划汇编十篇光阴的迅速,一眨眼就过去了,我们的工作又将在忙碌中充实着,在喜悦中收获着,立即行动起来写一份计划吧。相信大家又在为写计划犯愁了吧?以下是我帮大家整理的高一数学教学计划10篇,欢迎大家分享。高一数学教学计划 篇1指导思想准确把握教学大纲和考试大纲的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。教学建议1、深入钻研教材。以教材为核心,深入研究
2、教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能
3、,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。教研课题高中数学新课程新教法教学进度第一周 集 合第二周 函数及其表示第三周 函数的基
4、本性质第四周 指数函数第五周 对数函数第六周 幂函数第七周 函数与方程第八周 函数的应用第九周 期中考试第十十一周 空间几何体第十二周 点,直线,面之间的位置关系第十三十四周 直线与平面平行与垂直的判定与性质第十五十六周 直线与方程第十八十九周 圆与方程第二十周 期末考试高一数学教学计划 篇2本节课在教材中的地位和作用:不等式的基本性质,对即将要学习的一元一次不等式的解法乃至高中的不等式的运用都是非常重要的基础。本节内容掌握的好坏,将直接影响到后面的教学内容。而对于不等式的基本性质1和2,相信绝大部分的学生都不会有很大困难,而不等式的基本性质3,通过对以往学生的了解,发现很多学生会忘记分正负两
5、种情况,因此在本节新课教学中,我采用了将不等式未知的性质与等式已知的性质进行类比教学,让学生自己去发现验证不等式的性质。一、教学目标:(一)知识与技能1.掌握不等式的三条基本性质。2.运用不等式的基本性质对不等式进行变形。(二)过程与方法1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。(三)情感态度与价值观通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。二、教学重难点教学重点: 探索不等式的三条基本性
6、质并能正确运用它们将不等式变形。教学难点: 不等式基本性质3的探索与运用。三、教学方法:自主探究合作交流四、教学过程:情景引入:1.举例说明什么是不等式?2.判断下列各式是否成立?并说明理由。( 1 )若x-4=12, 则x=16()( 2 )若3x=12, 则 x=4()( 3 )若x-412 则 x16()( 4 )若3x12则 x4()(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等
7、式有相类似的性质。这节课我们就通过类比来探究不等式的基本性质。温故知新问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“,b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?及时进行学
8、习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。3.小明的困惑:小明用不等式的基本性质将不等式mn进行变形,两边都乘以4,4m4n,两边都减去4m, 04n-4m,即04(n-m),两边都除以(n-m),得04,0怎么会大于4呢?小明可糊涂了聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。4.火眼金睛a2, 则3a_2a2a3a,则 a _ 0通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。课堂小结:这节课你有哪些收获?有何体会?你认为自己的表
9、现如何?教师引导学生回顾、思考、交流。回顾、总结、提高。学生自觉形成本节的课的知识网络。思考题:你来决策咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用数学知识解决实际问题的能力,又树立了学好数学的信心。高一数学教学计划 篇3一、高考要求了解映射的概念,理解函数的概念;了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇
10、偶性的方法;了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;理解对数函数的概念、图象和性质;能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.二、两点解读重点:求函数定义域;求函数的值域或最值;求函数表达式或函数值;二次函数与二次方程、二次不等式相结合的有关问题;指数函数与对数函数;求反函数;利用原函数和反函数的定义域值域互换关系解题.难点:抽象函数性质的研究;二次方程根的分布.三、课前训练1.函数的定义域是 ( D )(A) (B) (C) (D)2.函数的反函数为 ( B
11、)(A) (B)(C) (D)3.设则 .4.设,函数是增函数,则不等式的解集为 (2,3)四、典型例题例1 设,则的定义域为 ( )(A) (B)(C) (D)解:在中,由,得, ,在中,.故选B例2 已知是上的减函数,那么a的取值范围是 ( )(A) (B) (C) (D)解:是上的减函数,当时,;又当时,且,解得:.综上,故选C例3 函数对于任意实数满足条件,若,则解:函数对于任意实数满足条件,即的周期为4,高一数学教学计划 篇4教材教法分析本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通
12、过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对空间直角坐标系的学习和掌握将对今后学习本节内容空间两点间的距离和选修21内容空间中的向量与立体几何有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。学情分析一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系
13、,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。教学目标1、知识与技能通过具体情境,使学生感受建立空间直角坐标系的必要性了解空间直角坐标系,掌握空间点的坐标的确定方法和过程感受类比思想在探究新知识过程中的作用2、过程与方法结合具体问题引入,诱导学生探究类比学习,循序渐进3、情感态度与价值观通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。教学重点本课是本节第一节课,关键
14、是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。教学难点“通过建立恰当的空间直角坐标系,确定空间点的坐标”。先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。高一数学教学计划 篇5教学目标1通过对幂函数概念的学习以及对幂函数图象和性
15、质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。教学重点、难点重点:幂函数的性质及运用难点:幂函数图象和性质的发现过程教学方法:问题探究法 教具:多媒体教学过程一、创设情景,引入新课问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?(总结:根据函数的定义可知,这里p是w的函数)问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果
16、正方体的边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长 ,这里a是S的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)二、新课讲解由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得
17、出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数? y= y=2x2 y=x y=x2+x y=-x3 (由学生独立思考
18、、回答)2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?(学生讨论,教师引导。学生回答。)3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?(学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-,0)U(0,+),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)例2写出下列函数的定义域,并指出它们的奇偶性:y=x y= y=x y=x(学生解答,并归纳
19、解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)4上述函数y=x y= y=x y=x 的单调性如何?如何判断?(学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)教师总评:幂函数的性质(1)所有的幂函数在(0,+)上都有定义,并且图象都过点(1,1),(
20、2)如果a0,则幂函数的图象通过原点,并在区间0,+)上是增函数,(3)如果a0,则幂函数在(0,+)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+,图象在x轴上方无限地趋近x轴。5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。例3巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:y=x y=x y=x 。例4简单应
21、用1:比较下列各组中两个值的大小,并说明理由:0.75 ,0.76 ;(-0.95) ,(-0.96) ;0.23 ,0.24 ;0.31 ,0.31例5简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。例6简单应用2:已知(a+1)(3-2a) ,试求a的取值范围。课堂小结今天的学习内容和方法有哪些?你有哪些收获和经验?1、 幂函数的概念及其指数函数表达式的区别 2、 常见幂函数的图象和幂函数的性质。布置作业:课本p.73 2、3、4、思考5高一数学教学计划 篇6平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形 。教学目标(1)掌握由一点和斜率导出直线
22、方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.(3)掌握直线方程各种形式之间的互化.(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.教学建议1教材分析(1)知识结构由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 数学 教学计划 汇编
限制150内