电路分析基础(英文版)课后答案第三章.pdf
《电路分析基础(英文版)课后答案第三章.pdf》由会员分享,可在线阅读,更多相关《电路分析基础(英文版)课后答案第三章.pdf(70页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3Techniques of Circuit AnalysisDrill ExercisesDE 3.1 a 11,8 resistors,2 independent sources,1 dependent sourceb 9c 9,R4 R5forms an essential branch as does R8 10 V.The remainingseven branches contain a single element.d 7e 6f 4g 6DE 3.2 Solution given in text.DE 3.3 Solution given in text.DE 3.4 Solu
2、tion given in text.DE 3.5 a The two node voltage equations are15+v160+v115+v1 v25=05+v22+v2 v15=0Solving,v1=60 V and v2=10 V;Therefore,i1=(v1 v2)=5=10 Ab p15A(del)=(15)(60)=900 Wc p5A=5(10)=50 WDE 3.6 Use the lower node as the reference node.Let v1=node voltage across 1 resistor and v2=node voltage
3、across 12 resistor.Thenv11+v1 v28=4:55354CHAPTER 3.Techniques of Circuit Analysisv212+v2 v18+v2 304=0Solving,v1=6 Vv2=18 V Thus,i=(v1 v2)=8=1:5 Av=v2+2i=15 VDE 3.7 Use the lower node as the reference node.Let v1=node voltage across the 8 resistor,let v2=node voltage across the 4 resistor.Thenv1 506+
4、v18+v1 v22 3i1=05+v24+v2 v12+3i1=0i1=50 v16Solving,v1=32 V;v2=16 V;i1=3 A p50V=50i1=150 W(delivering)p5A=5(v2)=80 W(delivering)p3i1=3i1(v2 v1)=144 W(delivering)DE 3.8 Use the lower node as the reference node.Let v1=node voltage across the 7.5 resistor and v2=node voltage across the 2.5 resistor.Plac
5、e thedependent voltage source inside a supernode between the node voltages v andv2.The node voltage equations arenode 1:v17:5+v1 v2:5=4:8supernode:v v12:5+v10+v22:5+v2 121=0We also have:v+ix=v2and ix=v1=7:5.Solving this set of equations for vgives v=8 VDE 3.9v1 602+v124+v1(60+6i)3=0;i=60+6i v13There
6、forev1=48 VDE 3.10vo40+vo 1010+vo+20i20=0;i=10 vo10+10+20i30Thereforevo=24 VProblems55DE 3.11 Dene three clockwise mesh currents i1,i2,and i3in the lower left,upper,andlower right windows.The three mesh-current equations are80=31i1 5i2 26i30=5i1+125i2 90i30=26i1 90i2+124i3a Solving,i1=5 A;therefore
7、the 80 V source is delivering 400 W to thecircuit.b Solving,i3=2:5 A;therefore p8=(6:25)(8)=50 WDE 3.12 a b=8,n=6,b n+1=3b Dene three clockwise mesh currents i1,i2,and i3in the upper,lower left,and lower right windows.The three mesh-current equations are(3v)+19i1 2i2 3i3=025 10=2i1+7i2 5i310=3i1 5i2
8、+9i3We also havev=3(i3 i1)Solving for i1and i3givesi1=1 A,i3=3 A Thereforev=12Vandp3v=(3v)i1=36 WDE 3.13 Let ia=lower left mesh current cw,let ib=upper mesh current cw,and ic=lower right mesh current cw.Then25=14ia 6ib 8ic0=6ia+16ib 8ic0=8ia 8ib+16ic+5ii=ia;ia=4 A;ic=2Avo=8(ia ic)=16 VDE 3.14Mesh 1:
9、30=11i1 2i2Mesh 2:0=2i1+19i2 5i356CHAPTER 3.Techniques of Circuit AnalysisCurrent source:i3=16 ASolution givesi1=2 A;i2=4 A;i3=16 AThe current in the 2 resistor isi1 i2=6 A:P2=(6)2(2)=72 WDE 3.15Mesh a:7ia 2ib 5ic=75Current sources:ib=10 A;ic=2v5Dependent variable:v=5(ia ic)Solution:ia=15 A;ib=10 A;
10、ic=10 A;v=25 VDE 3.16Supermesh a,b:2ia+4ib 4ic=10Mesh c:2ia 2ib+5ic=6Current source:ia ib=2 ASolution:ia=7 A;ib=5 A;ic=6 A:p1=i2c(1)=(6)2(1)=36 WProblems57DE 3.17 Let v1denote the voltage across the 2 A source.Let v1be a voltage rise in thedirection of the 2 A current.v1 2015 2+v1 2510=0;v1=35 Vp2A=
11、35(2)=70 Wp2A(del)=70 WDE 3.18Mesh 1:12i1 6i2 4i3=128Mesh 2:6i1+14i2 3i3+30ix=0Current source:i3=4 ADependent variable:ix=i1 i3Solution:i1=9 A;i2=6 A;i3=4 A;ix=5 A:v4A=3(i3 i2)4ix=10 VThe power delivered by the 4A source isp4A=(10)(4)=40 WDE 3.19 To nd the Th evenin resistance,deactivate the indepen
12、dent voltage sourceand note that RTh=5k20+8k12=6.With the terminals a,b open,thecurrent delivered by the 72 V source is 72/24 or 3 A.The current(left-to-right)in the 5 resistor is(20=25)(3)=2:4 A,and the current(left-to-right)in the 12 resistor is(5/25)3 or 0:6 A.The Th evenin voltagevTh=vabis the d
13、rop across the 8 resistor plus the drop across the 20 resistor.Thus vTh=(8)(0:6)+(20)(3)=64:8 V.58CHAPTER 3.Techniques of Circuit AnalysisDE 3.20 After one source transformation,the circuit becomesThereforeIN=6 A,RN=20k12=7:5DE 3.21 Find the Th evenin equivalent with respect to A,B.VTh+3612;000+VTh6
14、0;000 0:018=0;VTh=150 VRTh=15;000+(60;000)(12;000)72;000=25 k;Therefore,vmeas=150100;000125;000!=120 VDE 3.22 Summing the currents away from node a,where vTh=vabWe havevTh8+4+3ix+vTh 242=0;ix=vTh8Solving for vThyields vTh=8 ViT=4ix+vT=2;ix=vT=8ThereforeiT=vTandRTh=vT=iT=1Problems59DE 3.23 Use the bo
15、ttom node as the reference.Let v1be the node voltage across the60 resistor.Thenv160+v1(vTh+160i)20 4=0;vTh40+vTh80+vTh+160i v120=0i=vTh40;thereforevTh=30 VLet iTbe the test current into terminal a:iT=vT80+vT40+vT+160(vT=40)80;iTvT=110Therefore,RTh=10DE 3.24 First nd the Th evenin equivalent circuit.
16、To nd vTh,use the bottom nodeas the reference.Let vTh=vaband v1=node voltage across the 20 V 4 branch.The two node Voltage equations arevTh 100 v4+vTh v14=0;(v=v1 20)v1 1004+v1 204+v1 vTh4=0Solving for vThgives vTh=120 V.To nd RTh,deactivate the twoindependent sources and apply a test voltage source
17、 across a,b.Let vTbepositive at a and iTdirected into a.Then the two node Voltage equations arevT v4+vTh v4=iT;v4+v4+v vT4=0Thereforev=vT=3and12iT=4vTSoRTh=vT=iT=3a For maximum power transfer,RL=RTh=3b pmax=(120=6)2(3)=1200 W60CHAPTER 3.Techniques of Circuit AnalysisDE 3.25 When RL=3,the voltage acr
18、oss RLis 60 V.As before,let v1be the nodevoltage across the 20 V|4 branch,then v=v1 20 and603+60 v14+60 100 v4=0Therefore v1=60 V and v=40 V.The current out of the plus terminal ofthe 100 V source isi1=100 604+100+40 604=10+20=30 Aa Therefore 100 V is delivering 3000 W to the circuit.b The current o
19、ut of the plus terminal of the dependent source is 20 A.Therefore the dependent source is delivering 800 W to the circuit.c The load power is(1200=3800)100 or 31:58%of this generated power.ProblemsP 3.1 a Fiveb ThreecSum the currents at any three of the four essential nodes a,b,c,and d.Using nodes a
20、,b,and c we getig+i1+i2=0i1+i4+i3=0i5 i2 i3=0Problems61d Two.e Sum the voltages around two independent closed paths,avoiding a paththat contains the independent current source since the voltage across thecurrent source is not known.Using the upper and lower meshes formedby the ve resistors givesR1i1
21、+R3i3 R2i2=0R3i3+R5i5 R4i4=0P 3.22+vo4+vo 555=0vo=20 Vp2A=(20)(2)=40 W(absorbing)P 3.3 Let v2be the node voltage across the 80 resistor,positive at the upperterminal.Then 4+v120+v280+v240=0(Note we have created a super node in writing this expression.)v1+60=v2:v1=20 V:v2=80 Vpdel=60igwhere igis the
22、current out of the positive terminal4=ig+v120;ig=3 A:pdel=60(3)=180 W62CHAPTER 3.Techniques of Circuit AnalysisP 3.4 av148+v1 1288+v1 v218=0v220+v2 v118+v2 7010=0Solving,v1=96 V;v2=60 Via=128 968=4 Aib=9648=2 Aic=96 6018=2 Aid=6020=3 Aie=60 7010=1 Ab pdev=128(4)+70(1)=582 WP 3.5 Use the lower termin
23、al of the 5 resistor as the reference node.vo 6010+vo5+3=0Solving,vo=10 VP 3.6 aProblems63v1 1102+v1 v28+v1 v316=0v2 v18+v23+v2 v324=0v3+1102+v3 v224+v3 v116=0Solving,v1=74:64 V;v2=11:79 V;v3=82:5 VThus,i1=110 v12=17:68 Ai4=v1 v28=7:86 Ai2=v23=3:93 Ai5=v2 v324=3:93 Ai3=v3+1102=13:75 Ai6=v1 v316=9:82
24、 AbXPdev=110i1+110i3=3457:14 WXPdis=i21(2)+i22(3)+i23(2)+i24(8)+i25(24)+i26(16)=3457:14 WP 3.7 2:4+v1125+v1 v225=0v2 v125+v2250+v2375 3:2=0Solving,v1=25 V;v2=90 VCHECK:p125=(25)2125=5 Wp25=(90 25)225=169 Wp250=(90)2250=32:4 Wp375=(90)2375=21:6 Wp2:4A=(25)(2:4)=60 WXpabs=5+169+32:4+21:6+60=288 WXpdev
25、=(90)(3:2)=288 W(CHECKS)64CHAPTER 3.Techniques of Circuit AnalysisP 3.8 av150+v1 6405+v1 v22:5=0v2 v12:5+v2 v35+12:8=0v32:5+v3 v25 12:8=0Solving,v1=380 V;v2=269 V;v3=111 V;b ig=640 3805=52 Apg(del)=(640)(52)=33;280 WP 3.9v1 1444+v110+v1 v280=0so29v1 v2=28803+v2 v180+v25=0sov1+17v2=240Solving,v1=100
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电路 分析 基础 英文 课后 答案 第三
限制150内