2022高一数学教学计划汇总5篇.docx
《2022高一数学教学计划汇总5篇.docx》由会员分享,可在线阅读,更多相关《2022高一数学教学计划汇总5篇.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022高一数学教学计划汇总5篇高一数学教学计划汇总5篇日子如同白驹过隙,我们又将接触新的知识,学习新的技能,积累新的经验,此时此刻我们需要开始做一个计划。你所接触过的计划都是什么样子的呢?下面是我收集整理的高一数学教学计划5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。高一数学教学计划 篇1教材分析:解不等式是不等式学习的主要内容,是中学数学的一项重要技能。主要类型有:一元一次不等式或不等式组的解法,一元二次不等式或不等式组的解法。其中,一次不等式的解法是基础,初中已经学习,二次不等式是重点,也是学习的难点。作为数学重要的工具及方法,经常运用于其它数学知识之中。一元二次不等式的解法主要有二
2、种,课本上介绍的是“数形结合”方法,这种方法将二次函数,二次方程结合为一体,并且借助“图形”直观地得出答案,充分展现了数学知识之间的内在联系,另外也展现了“数形结合”思想方法的巨大魅力。然而,个人认为,还有一种更加自然的方法,将二次不等式转化为一次不等式组的方法,这种方法思路自然,同时也体现了“转化”思想,难度也不大,应该更加符合学生的实际思维及思路。学情分析:初中已经学习了一元一次不等式(或组)的解法,积累了一定的解题经验。同时,对于二次方程,二次函数等相关知识学生均较为熟悉。然而,根据自己的调查,一少部分学生对于一元一次不等式及不等式组的解法都表现出一定程度的陌生。进而,可以先从复习简单的
3、一次不等式及不等式组入手加以展开教学。学生心理方面,学习积极性较高,对数学的学习兴趣、信心也比较理想,有较强的学习动机考上大学,尽管是外在的诱因。教学目标:知识与技能熟练掌握一元一次不等式及不等式组的解法,初步学会两种方法求出一元二次不等式的解集过程与方法经历不等式求解的探索及发现过程,体验“数形结合及转化”思想的魅力,掌握方法,学会学习情感、态度及价值观在上述过程中,体验成功,激发了对数学学习的兴趣及信心,发展了对数学学习的积极情感,增强了学习的内在动机教学重点:一元二次不等式的解法教学难点:解法的探索及发现,关键在于“识图能力”反思:今天的课堂,这个难点突破欠缺力量,主要缘于自己备课时对难
4、点考虑不到位,进而缺乏必要的设计。在课堂上,就难点特别与个别差生进行了交流,并且给予了帮助及指导。在指导过程中,我找出了他们困难的二个环节:首先,对平面曲线上点的横坐标与纵座标之间的对应关系表现陌生,进而对它们的取值变化情况感到费解。其次,是差生的思维能力尚处于“经验思维”,辩证思维能力薄弱,进而对运动中的点的坐标取值范围只能是“一筹莫展”。在了解情况后,遵循“最近发展区”原理,以问题串的形式给差生提供必要的帮助后,差生也顺利度过了难关。由此足以说明,从知识的角度而言,“没有教不好的学生,只有不会教的教师:这句话还是相当有道理的。当然,这一切的前提就是对学生“学情”的掌握。美国著名心理学家、结
5、构主义学派的代表人布鲁纳也有类似观点:给我一打健康的儿童,我可以教会他任何任何学科任何年龄段的任何知识。教学程序:一、复习一元一次不等式及不等式组的解法以题组形式设计习题2x+37不等式组axb二、创设二次不等式的生活背景实例,引入课题采用课本上的实例,有关网络收费问题三、一元二次不等式的解法探索(1)在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。(2)采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的解题步
6、骤。今天的课堂上,这些解题步骤全部由学生的语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。之后,从特殊到一般,研究一般的二元一次不等式的解法。由于经历了前面的解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。四、练习环节可以说,即使到了高三,仍然有不少同学对于一元二次不等
7、式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。五、课堂小结知识,思想、方法及感悟等六、课后作业作业设计:分成A、B两层,难度不一,让学生自主选择,均来源于课本上的A组或B组课外思考题:1比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同2已知不等式mx2-(m-2)x+m0的解集为R,求m的取值范围变式一:戓
8、将R改为空集,此时结论如何变式二:仿上,自己改编条件,并解之。反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。高一数学教学计划 篇2一、指导思想:本学期,我将认真贯彻我校的教育教学工作要点,在学校教导处工作计划的指导下,围绕“生本教育”的教学理念,以更新观念为前提,以育人为归宿,以提高课堂教学效率为重点。转变教学理念,改进教学方法,优化教研模式,积极探索在新课程改革背景下的数学教研工作新体系。继续推进“生本教育”改革的进程,提高数学教学质量,
9、努力让自己成为有思想、有追求、有能力、有经验、有智慧、有作为的新型教师。二、目标任务:1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。2、在数学学科教研教改中注重素质教育,让自己成为一位思想素质、业务素质过硬的数学教师。3、狠抓生本教育,加强数学课堂改革力度,积极参加各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。4、积极参加集体备课和业务学习活动,共同提高教育教学水平。听课后认真评课,及时反馈,如教学内容安排否恰当。难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。是否符合素质教育的要求,老师的教学基本功等方面
10、进行中肯,全面的评论、探讨。三、具体措施:1、把握教材关:认真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。计划要体现每单元重难点以及采取的措施,研究解决难点的方法。从而改进自己的教学方法和练习策略。对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的教育教学心得。2、规范日常工作:严格规范数学教学常规。要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生。学生作业的规范性要求,包括学生书写作业的规范和教师批阅作业的规范。3、教师角色的变化:要积极实践生本教育,真正实现教师是学习的组织者、引
11、导者,是学生的合作伙伴,不再是在“讲”的基础上“扶”着学生、“牵”着学生去掌握知识,而是要将知识“放”给学生,放心、放手地让学生自主学习。总之,我们愿与新课程同行,在探索中前进,在失败中成熟,把新课改引向深入。因为我们坚信我们的新课改最终可以使学生学会:用自己的眼睛去观察,用自己的头脑去思考,用自己的语言去表达,用自己的心灵去感悟。高一数学教学计划 篇3教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重
12、视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如与?的区别.三维目标1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.课时安排1课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,53等等,类比实数之间的关系,你会想到集合之间有什么关系
13、呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.类比实数的大小关系,如57,22,试想集合间是否有类似的“大小”关系呢?(答案:(1);(2)?;(3)推进新课提出问题(1)观察下面几个例子:A=1,2,3,B=1,2,3,4,5;设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;设C=x|x是两条边相等的三角形,D=x|x是等腰三角形;E=2,4,6,F=6,4,2.你能发现两个集合间有什么关系吗?(2)例子中集合A是
14、集合B的子集,例子中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子,类比实数中的结论:“若ab,且ba,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子中集合A和集合B.(6)已知A?B,试用Venn图表示集合A和B的关系.(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,
15、那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若ab,且bc,则ac”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在xB,且x A,我们称集合A是集合B的真子集,记作A B(或B A).(3)实数中的“”类比集合中的 .(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(5)封闭曲线可以是矩形也可以是椭圆等等,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 数学 教学计划 汇总
限制150内