(完整版)正弦定理、余弦定理、解三角形-(修改的).doc
《(完整版)正弦定理、余弦定理、解三角形-(修改的).doc》由会员分享,可在线阅读,更多相关《(完整版)正弦定理、余弦定理、解三角形-(修改的).doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Learn General Secretary on two to learn a strengthening four Consciousnesses important speech caused a strong reaction in the country. Time, watching red treasure, the origin of building the party back to power, how to strengthen services for the masses, improve party cohesion, fighting to become th
2、e grass-roots party members and masses hot topic. Grass-roots party organizations two is to strengthen the service of party members and cadres, the pioneer spirit. Distribution of grass-roots party organizations in all walks of people, clothing, shelter, which belongs to the nerve endings of the par
3、ty organization and comments reputation has a direct perception of the masses. Strengthen the party ahead of the pedal spirit; strengthen the party members and cadres success does not have to be me and the first to bear hardships, the last to service spirit to set the partys positive image among the
4、 people is important. Grass-roots party organizations two is to cleanse all people not happy not to see stereotypes, establish the honest faithful, diligent faith for the people. No need to avoid mentioning that, some members of our party can not stand the money, corrosion of temptation, thin, Xu Zh
5、ou, such abuse and corrupt bribery, malfeasance borers, and rats. Two, is to clean up, thin, Xu, Zhous solution to restore the partys fresh and natural, solid and honest work style. Cleansing take, eat, card, undesirable and behaviour, cross, hard and cold, push attitude. Grass-roots party organizat
6、ions two is to strengthen the sense of ordinary party members, participating in consciousness, unity consciousness. For reasons known, members of grass-roots party branches less mobile, less resources, and the construction of party organizations have some lag. Two studies, is to focus on the grass-r
7、oots party branches loose, soft, loose problem, advance the party members and cadres, a gang working, Hong Kong report. Strong cleanup actions, style and rambling, presumptuous unqualified party members, pays special attention to party members and cadres joining party of thought problem. Party build
8、ing is obtained in the long-term development of our partys historical experience accumulated. Two is our party under the new historical conditions, strengthen the partys construction of a new rectification movement. Grass-roots party organizations should always catch the hard work, results-oriented.
9、 Two educational outcomes are long-term oriented and become an important impetus for the work. Two should have three kinds of consciousness two study and education, basic learning lies in the doing. Only the Constitution address the series of party rules, and do solid work, be qualified party member
10、s had a solid ideological basis. Only the learning and do real unity, to form a learn-learn-do-do the virtuous cycle, and ultimately achieve the fundamental objective of education. This requires that the Organization解三角形正弦定理(一)正弦定理:,(2)推论:正余弦定理的边角互换功能 , , = 典型例题:1在ABC中,已知,则B等于( )A B C D2在ABC中,已知,则这样
11、的三角形有_1_个3在ABC中,若,求的值解由条件同理可得练习: 一、 选择题1一个三角形的两内角分别为与,如果角所对的边长是,那么角所对的边的边长为() 2在ABC中,若其外接圆半径为,则一定有() 3在ABC中,则ABC一定是()等腰三角形 直角三角形等腰直角三角形 等腰三角形或直角三角形解:在ABC中,由正弦定理,得。2A2B或2A2B180,AB或AB90。故ABC为等腰三角形或直角三角形。二、填空题4在ABC中,已知且ABC,则_5如果,那么ABC是_等腰三角形_三、解答题6在ABC中,若,面积ABC,求的值解由条件ABC 当B为锐角时,由当B为钝角时,由7在ABC中,分别为内角,的
12、对边,若,求的值解 又 又 8在ABC中,求证:解:.111正弦定理(二)三角形的面积公式:(1)= (2)s=(3)典型例题:【例1】在ABC中,已知,则的值为 ( ) 【例2】在ABC中,已知,则此三角形的最大边长为_答案:【例3】ABC的两边长分别为3cm,5cm,夹角的余弦是方程的根,求ABC的面积解 设两边夹角为,而方程的两根ABC 【例4】在锐角三角形ABC中,A=2B,、所对的角分别为A、B、C,试求的范围。分析:本题由条件锐角三角形得到B的范围,从而得出的范围。【解】在锐角三角形ABC中,A、B、Cc新的三角形的三边长为ax、bx、cx,知cx为最大边,其对应角最大而(ax)2
13、(bx)2(cx)2x22(abc)x0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形5.在ABC中,cos2,(a,b,c分别为角A,B,C的对边),则ABC的形状为 ()A正三角形 B直角三角形 C等腰三角形或直角三角形 D等腰直角三角形解析:cos2,cosB,a2c2b22a2,即a2b2c2,ABC为直角三角形答案:B二、填空题6ABC中,ABC,则_7. 在ABC中,已知,ABC,则_三、解答题8在ABC中,角A、B、C对边分别为,证明。解由余弦定理,知,9已知圆内接四边形的边长,求四边形的面积解如图,连结,则四边形面积ABD+BCD=A+C=1800 s
14、in= sin C=16 sin由余弦定理,知在ABC中,在CDB中,又120016sin10、 在ABC中,角A、B、C的对边分别为a、b、c,(1)求角C的大小;(2)求ABC的面积解:(1)由 4cos2C4cosC解得 0C180,C=60 C60(2)由余弦定理得C2a2b22ab cos C 即 7a2b2ab 又ab5 a2b22ab25 由得ab6 SABC113正、余弦定理的综合应用典型例题:例题在中,若,则的大小是_.解: a:b:c5:7:8设a5k,b7k,c8k,由余弦定理可解得的大小为.例题.在ABC中,满足条件,则_ ,ABC的面积等于_ 答案:;例题3在ABC中
15、,A60,b1,求的值。错解:A60,b1,又,解得c4。由余弦定理,得又由正弦定理,得。辨析:如此复杂的算式,计算困难。其原因是公式不熟、方法不当造成的。正解:由已知可得。由正弦定理,得。例题4. 在ABC中,角A、B、C对边分别为,已知,()求的大小;()求的值解 ()在ABC中,由余弦定理得 ()在ABC中,由正弦定理得 练习:一、 选择题在ABC中,有一边是另一边的倍,并且有一个角是,那么这个三角形()一定是直角三角形 一定是钝角三角形可能是锐角三角形 一定不是锐角三角形点评:三角形形状判定方法:角的判定、边的判定、综合判定、余弦定理判定;其中余弦定理判定法:如果是三角形的最大边,则有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 正弦 定理 余弦 三角形 修改
限制150内