高考数学能力提高题第25讲 建构函数模型的应用性问题.doc
《高考数学能力提高题第25讲 建构函数模型的应用性问题.doc》由会员分享,可在线阅读,更多相关《高考数学能力提高题第25讲 建构函数模型的应用性问题.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 高考数学能力提高题第25讲 建构函数模型的应用性问题 题型预测应用题是高考考查的重点,也是考生得分的难题,近年来该类试题的特点日趋鲜明:1.应用题的信息来源真实可靠;2.应用题的个数明显在增加;3.注重考查学生动脑、动手能力及应用的能力(如2002年文科22题)。从高考应用题来看,涉及函数、数列、不等式等高中主要板块的内容,是历年高考命题的热点和重点解答函数型应用题,一般先从建立函数的解析表达式入手,通过研究函数的性质获得解答因此,这类问题的难点一般有两个:一是解析式的建立,二是数学知识的灵活应用范例选讲例1某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成
2、经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息)已知该种消费品的进价为每件40元;该店每月销售量q(百件)与销售价p(元件)之间的关系用右图中的一条折线(实线)表示;职工每人每月工资为600元,该店应交付的其它费用为每月13200元()若当销售价p为52元件时,该店正好收支平衡,求该店的职工人数;()若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?讲解 本题题目的篇幅较长,所给条件零散杂乱,为此,不仅需要划分段落层次,弄清每一层次独立的含义和相互间的关系,更需要抓住矛盾的主要方面由题目的问题找到关键词“收支平衡”
3、、“还清所有债务”,不难想到,均与“利润”相关从阅读和以上分析,可以达成我们对题目的整体理解,明确这是一道函数型应用题为此,首先应该建立利润与职工人数、月销售量q、单位商品的销售价p之间的关系,然后,通过研究解析式,来对问题作出解答由于销售量和各种支出均以月为单位计量,所以,先考虑月利润()设该店的月利润为S元,有职工m名则又由图可知:所以,由已知,当时,即,解得即此时该店有50名职工()若该店只安排40名职工,则月利润当时,求得时,S取最大值7800元当时,求得时,S取最大值6900元综上,当时,S有最大值7800元设该店最早可在n年后还清债务,依题意,有解得所以,该店最早可在5年后还清债务
4、,此时消费品的单价定为55元点评求解数学应用题必须突破三关:(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义(2)建模关:即建立实际问题的数学模型,将其转化为数学问题(3)数理关:运用恰当的数学方法去解决已建立的数学模型例2一位救生员站在边长为100米的正方形游泳池ABCD的A处(如图),发现C处有一位溺水者他跑到E处后,马上跳水沿直线EC游到C处,已知救生员跑步的速度为米分,游泳的速度为米分试问,救生员选择在何处入水才能最快到达C处,所用的最短时间是多少?讲解:理解本题并不难:应该建立时间t(分)关于某个变量的函数关系式,然后,通过求最值的方法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学能力提高题第25讲 建构函数模型的应用性问题 高考 数学 能力 提高 25 建构 函数 模型 应用性 问题
限制150内