机器学习之决策树在sklearn中的实现.docx
《机器学习之决策树在sklearn中的实现.docx》由会员分享,可在线阅读,更多相关《机器学习之决策树在sklearn中的实现.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、I JU.HU:iiDpicrQQaiatriiiaiypRYtaiooroiaiioaiai9biRcipiJ, (;:!WWwWloaii 八、sr,g”, I =*B!9?iWR1小伙伴们大家好。(一一)7、,首先声明一下,我的开发环境是JupyteMab,所用的库和版本 大家参考:Python 3.7.1 (你的版本至少要3.4以上Scikit-learn 0.20.0 (你的版本至少要 0.20Graphviz 0.8.4 (没有画不出决策树哦,安装代码 conda install python-graphviz用SKIearn建立一棵决策树这里采纳的数据集是SKIearn中的红酒数
2、据集。1导入需要的算法库和模块from skleam import tree #导入 tree模块from sklearn.datasets import load_wine #导入红酒数据集from sklearn.model_selection import train_test_split #导入训I 练集和测试集切分包v/pre2探究数据wine = load_wine()wine.datawine.targetwine.target.shape运行的结果是这样子的:In 2:wi ne = load_wine()wi ne . dataarray(1.423e+01, 1.710e+
3、00,l.O65e+03,1.320e+01, 1.780e+00,1.050e+03,1.316e+01, 2.36Oe+0O, 1.185e+03, ,1.327e+01, 4.280e+O0, 8.350e+02,1.317e+01, 2.590e+00, 8.400e+O2,1.413e+01, 4.10Oe+OO, 5.60Oe+O2)array(1.423e+01, 1.710e+00,l.O65e+03,1.320e+01, 1.780e+00,1.050e+03,1.316e+01, 2.36Oe+0O, 1.185e+03, ,1.327e+01, 4.280e+O0, 8.
4、350e+02,1.317e+01, 2.590e+00, 8.400e+O2,1.413e+01, 4.10Oe+OO, 5.60Oe+O2)2.430e+00, 1.040e+00, 3.920e+00,2.140e+00,1.050e+00, 3.400e+00,2.670e+00,1.030e+0O, 3.170e+00,2.260e+00,5.900e-01, 1.560e+00,2.370e+00, 6000e-01, 1.620e+00,2.740e+00,6.100e-01, 1.600e+00,wine.data.shape (178, 13)data就是该数据集的特征矩阵,
5、从运行结果可以看出,该红酒数据集一共有178条纪录,13 个特征。wine.data.shape (178, 13)wi ne , targetOut 5:array(0,3330,30,0,0,30,30,30,30,*33330,0,333333333333330,0,0,0,0,31,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,
6、2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2)wi ne , target.shapeOut6: (178,)特征矩阵中有178条纪录,相对应的标签Y就有178个数据。假如wine是一张表,应当长这样:import pandas as pd pd.concat(pd.Datafrxxxxame(wine.data)pd.Datafrxxxxame(wine.target)axis=l)In 11:In 12:Out12:import pandas as pdpd.concat(p
7、d , DataFrame(wine.data),pd.DataFrame(wine.target),axis=l)01234567891011120014.231.712.4315.6127.02.803.060.282.295.6400001.043.921065.00113.201.782.1411.2100.02.652.760.261.2843800001.053.401050.00213.162.362.6718.6101.02.803.240.302.815.6800001.033.171185.00314371.952.5016.8113.03.853.490.242.187.
8、8000000.863.451480.00413.242.592.8721.0118.02.802.690.391.8243200001.042.93735.00514.201.762.4S15.2112.03.273.390341.976.7500001.052.851450.00614.391.872.4514.696.02.502.520301.985.2500001.023.581290.00714.062.152.6117.6121.02.602.510.311.255.O5OOOO1.063.581295.00814.831.642.1714.097.02.802.980291.9
9、85.2000001.082.851045.00913.861.352.2716.098.02.983.150.221.857.2200001.013.551045.001014.102.162.3018.0105.02.953.320.222.385.7500001.253.171510.001114.121.4823216.895.02.202.430.261.575.0000001.172.821280.001213.751.732.4116.089.02.602.760.291.815.6000001.152.901320.001314.751.732.3911.491.03.103.
10、690.432.815.4000001.252.731150.001414.381.872.3812.0102.03.303.640.292.967.5000001.203.001547.001513.631.812.7017.2112.02.852.910301.4673000001.282.881310.001614.301.922.7220.0120.02.803.140.331.976.2000001.072.651280.001713.831.572.6220.0115.02.953.400.401.726.6000001.132.571130.001814.191.592.4816
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器 学习 决策树 sklearn 中的 实现
限制150内