(完整版)正多边形和圆及圆的有关计算.doc
《(完整版)正多边形和圆及圆的有关计算.doc》由会员分享,可在线阅读,更多相关《(完整版)正多边形和圆及圆的有关计算.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正多边形和圆及圆的有关计算一、知识梳理:1、正多边形和圆 各边相等,各角也相等的多边形叫正多边形。 定理:把圆分成n(n3)等分: (l)依次连结各分点所得的多边形是这个圆的内按正多边形; (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。 正多边形的外接(或内切)圆的圆心叫正多边形的中心。外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距。 正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。 正n边形的每个中心角等于正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称
2、轴都通过正n边形的中心。 若n为偶数,则正n边形又是中心对称图形,它的中心就是对称中心。 边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。2、正多边形的有关计算 正n边形的每个内角都等于 定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。正多边形的有关计算都归结为解直角三角形的计算。3、画正多边形 (1)用量角器等分圆 (2)用尺规等分圆 正三、正六、正八、正四及其倍数(正多边形)。 正五边形的近似作法(等分圆心角)4、圆周长、弧长 (1)圆周长C2R;(2)弧长5、圆扇形,弓形的面积 (l)圆面积:; (2)扇形面积:一条弧和经过这条弧的端点的两条
3、半径所组成的图形叫做扇形。 在半径为R的圆中,圆心角为n的扇形面积S扇形的计算公式为: 注意:因为扇形的弧长。所以扇形的面积公式又可写为 (3)弓形的面积 由弦及其所对的弧组成的圆形叫做弓形。 弓形面积可以在计算扇形面积和三角形面积的基础上求得。如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。若弓形的弧是优弧,则弓形面积等于扇形面积加上三角形面积。 (4)圆柱和圆锥的侧面展开图 a、圆柱的侧面展开图 圆柱可以看作是由一个矩形旋转得到的,如把矩形ABCD绕边AB旋转一周得到的图形是一个圆柱。(如图所示) AB叫圆柱的轴,圆柱侧面上平行轴的线段CD, CD,都叫圆柱的母线。 圆柱的母线长
4、都相等,等于圆柱的高。 圆柱的两个底面是平行的。 圆柱的侧面展开图是一个长方形,如图617,其中AB=高,AC=底面圆周长。S侧面=2Rh 圆柱的轴截面是长方形一边长为h,一边长为2R R是圆柱底半径,h是圆柱的高。如图所示 b、圆锥的侧面展开图 圆锥可以看作由一个直角三角形旋转得到。 如图所示,把RtOAS绕直线SO旋转一周得到的图形就是圆锥。 旋转轴SO叫圆锥的轴,连通过底面圆的圆心,且垂直底面。 连结圆锥顶点和底面圆的任意一点的SA、SA、都叫圆锥的母线,母线长都相等。 圆锥的侧面展开图如所示是一个扇形SAB半径是母线长,AB是2R。(底面的周长),所以圆锥侧面积为S侧面=RL.二、典型
5、例题:1.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7叫做“正六边形的渐开线”,其中,的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,.当AB1时,l2 011等于( )A. B. C. D. 2.如图,一张半径为1的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A. B. C. D. 3.如图,直径AB为6的半圆,绕A点逆时针旋转60,此时点B到了点B,则图中阴影部分的面积是( ).A. 3pB. 6pC. 5pD. 4p4. 以数轴上的原点为圆心,为半径的扇形中,圆心角,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 正多边形 有关 计算
限制150内