((完整版))等比数列知识点总结与典型例题(精华word版)-推荐文档.pdf
《((完整版))等比数列知识点总结与典型例题(精华word版)-推荐文档.pdf》由会员分享,可在线阅读,更多相关《((完整版))等比数列知识点总结与典型例题(精华word版)-推荐文档.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第 1 页 共 12 页等比数列知识点总结与典型例题等比数列知识点总结与典型例题1、等比数列的定义:、等比数列的定义:,称为公比公比*12,nnaq qnnNa0且q2、通项公式:、通项公式:,首项:;公比:11110,0nnnnaaa qqA Ba qA Bq1aq推广:n mn mnnn mnmmmaaaa qqqaa3、等比中项:、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或,a A bAab2AabAab 注意:同号的同号的两个数才有才有等比中项,并且它们的等比中项有两个有两个(2)数列是等比数列 na211nnnaaa4、等比数列的前、等比数列的前项和项和公式:公式:
2、nnS(1)当时,1q 1nSna(2)当时,1q 11111nnnaqaa qSqq(为常数)1111nnnaaqAA BA BAqq,A B A B5、等比数列的判定方法:、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列n11(0)nnnnnnaaqaq qaaa或为常数,(2)等比中项:为等比数列21111(0)nnnnnnaaaaaa(3)通项公式:为等比数列0nnnaA BA Ba6、等比数列的证明方法:、等比数列的证明方法:依据定义:若或为等比数列*12,nnaq qnnNa0且1nnnaqaa7、等比数列的性质:、等比数列的性质:(2)对任何,在等比数列中,有。*,m
3、 nNnan mnmaa q(3)若,则。特别的,当时,得*(,)mnst m n s tNnmstaaaa2mnk 注:注:2nmkaaa12132nnna aaaa a等差和等比数列比较:等差和等比数列比较:等差数列等比数列第 2 页 共 12 页经典例题透析经典例题透析类型一:类型一:等比数列的通项公式等比数列的通项公式例例 1等比数列中,,求.na1964a a3720aa11a思路点拨:思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出1aq和,可得;或注意到下标,可以利用性质可求出、,再求.1aq11a1 9373a7a11a解析:解析:法一:法一:设此数列
4、公比为,则q8191126371164(1)20(2)a aa a qaaa qa q由(2)得:.(3)241(1)20a qq.10a 由(1)得:,.(4)421()64a q418a q(3)(4)得:,42120582qq,解得或422520qq22q 212q 当时,;22q 12a 1011164aa q当时,.212q 132a 101111aa q定义daann1)0(1qqaann递推公式daann1;mdaanmnqaann1;mnmnqaa通项公式dnaan)1(111nnqaa(0,1qa)中项2knknaaA(0,*knNkn))0(knknknknaaaaG(0,
5、*knNkn)前n项和)(21nnaanSdnnnaSn2)1(1)2(111)1(111qqqaaqqaqnaSnnn重要性质),(*qpnmNqpnmaaaaqpnm),(*qpnmNqpnmaaaaqpnm第 3 页 共 12 页法二:法二:,又,193764a aaa3720aa、为方程的两实数根,3a7a220640 xx 或 41673aa16473aa,或.23117aaa271131aaa1164a 总结升华:总结升华:列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零
6、).举一反三:举一反三:【变式 1】an为等比数列,a1=3,a9=768,求 a6。【答案答案】96法一:法一:设公比为 q,则 768=a1q8,q8=256,q=2,a6=96;法二:法二:a52=a1a9a5=48q=2,a6=96。【变式 2】an为等比数列,an0,且 a1a89=16,求 a44a45a46的值。【答案答案】64;,又 an0,a45=421894516a aa。34445464564a a aa【变式 3】已知等比数列,若,求。na1237aaa1238a a a na【答案答案】或;12nna32nna法一:法一:,2132a aa312328a a aa22
7、a 从而解之得,或,13135,4aaa a11a 34a 14a 31a 当时,;当时,。11a 2q 14a 12q 故或。12nna32nna法二法二:由等比数列的定义知,21aa q231aa q代入已知得2111211178aa qa qa a q a q第 4 页 共 12 页21331(1)7,8aqqa q211(1)7,(1)2(2)aqqa q将代入(1)得,12aq22520qq解得或2q 12q 由(2)得或 ,以下同方法一。112aq1412aq类型二:类型二:等比数列的前等比数列的前 n 项和公式项和公式例例 2设等比数列an的前 n 项和为 Sn,若 S3+S6=
8、2S9,求数列的公比 q.解析:解析:若 q=1,则有 S3=3a1,S6=6a1,S9=9a1.因 a10,得 S3+S62S9,显然 q=1 与题设矛盾,故 q1.由得,3692SSS369111(1)(1)2(1)111aqaqaqqqq整理得 q3(2q6-q3-1)=0,由 q0,得 2q6-q3-1=0,从而(2q3+1)(q3-1)=0,因 q31,故,所以。312q 342q 举一反三:举一反三:【变式 1】求等比数列的前 6 项和。1 11,3 9【答案答案】;364243,11a 13q 6n。666111331364112324313S【变式 2】已知:an为等比数列,a
9、1a2a3=27,S3=13,求 S5.【答案答案】;1211219或,则 a1=1 或 a1=9322273aa31(1)113313aqqqq或第 5 页 共 12 页.55551911 31213121S11 3913S或【变式 3】在等比数列中,求和。na166naa21128naa126nS nq【答案答案】或 2,;12q 6n,211nnaaa a1128na a 解方程组,得 或1112866nna aaa1642naa1264naa将代入,得,1642naa11nnaa qSq12q 由,解得;11nnaa q6n 将代入,得,1264naa11nnaa qSq2q 由,解得
10、。11nnaa q6n 或 2,。12q 6n 类型三:类型三:等比数列的性质等比数列的性质例例 3.等比数列中,若,求.na569aa3132310loglog.logaaa解析:解析:是等比数列,na110293847569a aaaaaaaaa 1032313logloglogaaa553123103563log()log()log 910a aaaaa举一反三:举一反三:【变式 1】正项等比数列中,若 a1a100=100;则 lga1+lga2+lga100=_.na【答案答案】100;lga1+lga2+lga3+lga100=lg(a1a2a3a100)而 a1a100=a2a9
11、9=a3a98=a50a51 原式=lg(a1a100)50=50lg(a1a100)=50lg100=100。【变式 2】在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为83272_。【答案答案】216;第 6 页 共 12 页法一:法一:设这个等比数列为,其公比为,naq,183a 445127823aa qq48116q 294q。23362341111aaaa q a qa qaq33389621634法二:法二:设这个等比数列为,公比为,则,naq183a 5272a 加入的三项分别为,2a3a4a由题意,也成等比数列,故,1a3a5a238273632a 36a。2
12、3234333216aaaaaa类型四:类型四:等比数列前等比数列前 n 项和公式的性质项和公式的性质例例 4在等比数列中,已知,求。na48nS 260nS3nS思路点拨:思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前 k 项和,第 2 个 k 项和,第 3 个 k 项和,第 n 个 k 项和仍然成等比数列。解析:解析:法一:法一:令 b1=Sn=48,b2=S2n-Sn=60-48=12,b3=S3n-S2n观察 b1=a1+a2+an,b2=an+1+an+2+a2n=qn(a1+a2+an),b3=a2n+1+a2n+2+a3n=q2n(a1+a2+
13、an)易知 b1,b2,b3成等比数列,2223112348bbbS3n=b3+S2n=3+60=63.法二:法二:,22nnSS1q 由已知得121(1)481(1)601nnaqqaqq得,即 514nq14nq 代入得,1641aq。3133(1)164(1)6314nnaqSq第 7 页 共 12 页法三:法三:为等比数列,也成等比数列,nanS2nnSS32nnSS,2232()()nnnnnSSSSS。22232()(6048)606348nnnnnSSSSS举一反三:举一反三:【变式 1】等比数列中,公比 q=2,S4=1,则 S8=_.na【答案答案】17;S8=S4+a5+a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 等比数列 知识点 总结 典型 例题 精华 word 推荐 文档
限制150内