((完整版))二次函数知识点汇总(全)-推荐文档.pdf
《((完整版))二次函数知识点汇总(全)-推荐文档.pdf》由会员分享,可在线阅读,更多相关《((完整版))二次函数知识点汇总(全)-推荐文档.pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第-1-页 共 22 页二次函数知识点一、二次函数概念:1二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。2yaxbxcabc何何0a 这里需要强调:和一元二次方程类似,二次项系数,而可以为零二次函数的定义域是全体实0a bc何数2.二次函数的结构特征:2yaxbxc 等号左边是函数,右边是关于自变量的二次式,的最高次数是 2xx 是常数,是二次项系数,是一次项系数,是常数项abc何何abc二、二次函数的基本形式1.二次函数基本形式:的性质:2yaxa 的绝对值越大,抛物线的开口越小。2.的性质:2yaxc上加下减。3.的性质:2ya xh左加右减。的符号a开口方向顶点坐标对称轴
2、性质0a 向上00何轴y时,随的增大而增大;时,随0 x yx0 x y的增大而减小;时,有最小值x0 x y00a 向下00何轴y时,随的增大而减小;时,随0 x yx0 x y的增大而增大;时,有最大值x0 x y0的符号a开口方向顶点坐标对称轴性质0a 向上0c何轴y时,随的增大而增大;时,随0 x yx0 x y的增大而减小;时,有最小值x0 x yc0a 向下0c何轴y时,随的增大而减小;时,随0 x yx0 x y的增大而增大;时,有最大值x0 x yc的符号a开口方向顶点坐标对称轴性质0a 向上0h何X=h时,随的增大而增大;时,随xhyxxhy第-2-页 共 22 页4.的性质
3、:2ya xhk三、二次函数图象的平移 1.平移步骤:方法一:将抛物线解析式转化成顶点式,确定其顶点坐标;2ya xhkhk何 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2yaxhk何【(h0)【(h0)【(k0)【(h0)【(h0)【(k0)【(k0)【|k|【y=a(x-h)2+ky=a(x-h)2y=ax2+ky=ax2 2.平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”hk概括成八个字“左加右减,上加下减”方法二:沿轴平移:向上(下)平移个单位,变成cbxaxy2ymcbxaxy2(或)mcbxaxy2mcbxaxy2沿轴平移:向左(右)平移个单位,
4、变成cbxaxy2mcbxaxy2(或)cmxbmxay)()(2cmxbmxay)()(2 的增大而减小;时,有最小值xxhy00a 向下0h何X=h时,随的增大而减小;时,随xhyxxhy的增大而增大;时,有最大值xxhy0的符号a开口方向顶点坐标对称轴性质0a 向上hk何X=h时,随的增大而增大;时,随xhyxxhy的增大而减小;时,有最小值xxhyk0a 向下hk何X=h时,随的增大而减小;时,随xhyxxhy的增大而增大;时,有最大值xxhyk第-3-页 共 22 页四、二次函数与的比较2ya xhk2yaxbxc从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,2ya
5、 xhk2yaxbxc即,其中22424bacbya xaa2424bacbhkaa 何五、二次函数图象的画法2yaxbxc五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、2yaxbxc2()ya xhk对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与y0c何0c何2hc,x10 x 何20 x 何轴没有交点,则取两组关于对称轴对称的点).x画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.xy六、二次函数的性质2yaxbxc 1.当时,抛物线开口向上,对称轴为,顶点坐标
6、为0a 2bxa 2424bacbaa何当时,随的增大而减小;当时,随的增大而增大;当时,有最小值2bxa yx2bxa yx2bxa y244acba 2.当时,抛物线开口向下,对称轴为,顶点坐标为当时,随0a 2bxa 2424bacbaa何2bxa y的增大而增大;当时,随的增大而减小;当时,有最大值x2bxa yx2bxa y244acba七、二次函数解析式的表示方法1.一般式:(,为常数,);2yaxbxcabc0a 2.顶点式:(,为常数,);2()ya xhkahk0a 3.两根式:(,是抛物线与轴两交点的横坐标).12()()ya xxxx0a 1x2xx注意:任何二次函数的解
7、析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种x240bac形式可以互化.八、二次函数的图象与各项系数之间的关系 1.二次项系数a二次函数中,作为二次项系数,显然2yaxbxca0a 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;0a aa 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大0a aa总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小aaa2.一次项系数b第-4-页 共 22 页 在二次项系数确定的前提下,决定了
8、抛物线的对称轴ab 在的前提下,0a 当时,即抛物线的对称轴在轴左侧;0b 02bay当时,即抛物线的对称轴就是轴;0b 02bay当时,即抛物线对称轴在轴的右侧0b 02bay 在的前提下,结论刚好与上述相反,即0a 当时,即抛物线的对称轴在轴右侧;0b 02bay当时,即抛物线的对称轴就是轴;0b 02bay当时,即抛物线对称轴在轴的左侧0b 02bay总结起来,在确定的前提下,决定了抛物线对称轴的位置ab的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是ababx2y0aby0ab“左同右异”总结:3.常数项c 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c
9、yxy 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c yy0 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负0c yxy 总结起来,决定了抛物线与轴交点的位置cy 总之,只要都确定,那么这条抛物线就是唯一确定的abc何何二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与轴的两个交点的横坐标,一般选用两根式;x4.已知
10、抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1.关于轴对称x 关于轴对称后,得到的解析式是;2yaxbxcx2yaxbxc 关于轴对称后,得到的解析式是;2ya xhkx2ya xhk 第-5-页 共 22 页 2.关于轴对称y 关于轴对称后,得到的解析式是;2yaxbxcy2yaxbxc关于轴对称后,得到的解析式是;2ya xhky2ya xhk 3.关于原点对称 关于原点对称后,得到的解析式是;2yaxbxc2yaxbxc 关于原点对称后,得到的解析式是;2ya xhk2ya xhk 4.关于顶点对称(即:抛物线
11、绕顶点旋转 180)关于顶点对称后,得到的解析式是;2yaxbxc222byaxbxca 关于顶点对称后,得到的解析式是2ya xhk2ya xhk 5.关于点对称 mn何关于点对称后,得到的解析式是2ya xhkmn何222ya xhmnk 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛a物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式十、二次函数与一元二次方程:1.二次函数与一元二次方程的
12、关系(二次函数与轴交点情况):x一元二次方程是二次函数当函数值时的特殊情况.20axbxc2yaxbxc0y 图象与轴的交点个数:x 当时,图象与轴交于两点,其中的是一元二次240bac x1200A xB x,12()xx12xx,方程的两根这两点间的距离.200axbxca2214bacABxxa 当时,图象与轴只有一个交点;0 x 当时,图象与轴没有交点.0 x 当时,图象落在轴的上方,无论为任何实数,都有;10a xx0y 当时,图象落在轴的下方,无论为任何实数,都有 20a xx0y 2.抛物线的图象与轴一定相交,交点坐标为,;2yaxbxcy(0)c第-6-页 共 22 页3.二次
13、函数常用解题方法总结:求二次函数的图象与轴的交点坐标,需转化为一元二次方程;x 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;根据图象的位置判断二次函数中,的符号,或由二次函数中,的符号判2yaxbxcabcabc断图象的位置,要数形结合;二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个x交点坐标,可由对称性求出另一个交点坐标.与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下2(0)axbxc ax面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0a 图像参考:y=x22y=2x2y=x2
14、 y=-2x2y=-x2y=-x220 抛物线与轴有两x个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根0 抛物线与轴只有x一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0 抛物线与轴无交x点二次三项式的值恒为正一元二次方程无实数根.第-7-页 共 22 页y=2x2-4y=2x2+2y=2x2y=3(x+4)2y=3(x-2)2y=3x2y=-2(x+3)2y=-2(x-3)2y=-2x2十一、函数的应用二次函数应用何何何何何何何何何何何何何何何何何何何二次函数考查重点与常见题型y=2(x-4)2-3y=2(x-4)2y=2x2第-8-页 共 22 页1 考查二次
15、函数的定义、性质,有关试题常出现在选择题中,如:已知以为自变量的二次函数的图像经过原点,则的值是 x2)2(22mmxmym2 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是(bkxy12bxkxy)y y y y 1 1 0 x o-1 x 0 x 0-1 x A B C D3 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。
16、35x4 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线(a0)与 x 轴的两个交点的横坐标是1、3,与 y 轴交点的纵坐标是2yaxbxc32(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5考查代数与几何的综合能力,常见的作为专项压轴题。【例题经典】由抛物线的位置确定系数的符号例 1(1)二次函数的图像如图 1,则点在()2yaxbxc),(acbM A第一象限 B第二象限 C第三象限 D第四象限 (2)已知二次函数 y=ax2+bx+c(a0)的图象如图 2 所示,则下列结论:a、b 同号;当 x=1 和 x=3时
17、,函数值相等;4a+b=0;当 y=-2 时,x 的值只能取 0.其中正确的个数是()A1 个 B2 个 C3 个 D4 个 (1)(2)【点评】弄清抛物线的位置与系数 a,b,c 之间的关系,是解决问题的关键例 2.已知二次函数 y=ax2+bx+c 的图象与 x 轴交于点(-2,O)、(x1,0),且 1x12,与 y 轴的正半轴的交点在点(O,2)的下方下列结论:abO;4a+cO,其中正确结论的个数为()A 1 个 B.2 个 C.3 个 D4 个答案:D会用待定系数法求二次函数解析式例 3.已知:关于 x 的一元二次方程 ax2+bx+c=3 的一个根为 x=-2,且二次函数 y=a
18、x2+bx+c 的对称轴是直线第-9-页 共 22 页x=2,则抛物线的顶点坐标为()A(2,-3)B.(2,1)C(2,3)D(3,2)答案:C例 4、(2006 年烟台市)如图(单位:m),等腰三角形 ABC 以 2 米/秒的速度沿直线 L 向正方形移动,直到 AB与 CD 重合设 x 秒时,三角形与正方形重叠部分的面积为 ym2(1)写出 y 与 x 的关系式;(2)当 x=2,3.5 时,y 分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴.例 5、已知抛物线 y=x2+x-1252(1)用配方法求它的顶点坐标和对称轴(2)若该抛物
19、线与 x 轴的两个交点为 A、B,求线段 AB 的长【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系例 6.已知:二次函数 y=ax2-(b+1)x-3a 的图象经过点 P(4,10),交 x 轴于,两点,)0,(1xA)0,(2xB)(21xx 交 y 轴负半轴于 C 点,且满足 3AO=OB(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点 M,使锐角MCOACO?若存在,请你求出 M 点的横坐标的取值范围;若不存在,请你说明理由(1)解:如图抛物线交 x 轴于点 A(x1,0),B(x2,O),则 x1x2=30,又x1O,x1
20、O,30A=OB,x2=-3x1 x1x2=-3x12=-3x12=1.x10,x1=-1x2=3 点 A(-1,O),P(4,10)代入解析式得解得 a=2 b=3 二次函数的解析式为 y-2x2-4x-6(2)存在点 M 使MC0ACO(2)解:点 A 关于 y 轴的对称点 A(1,O),直线 A,C 解析式为 y=6x-6 直线 AC 与抛物线交点为(0,-6),(5,24)符合题意的 x 的范围为-1x0 或 Ox5当点 M 的横坐标满足-1xO 或 OxACO例 7、“已知函数的图象经过点 A(c,2),cbxxy221求证:这个二次函数图象的对称轴是 x=3。”题目中的矩形框部分是
21、一段被墨水污染了无法辨认的文字。(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。点评:对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是 x=3”当作已知来用,再结合条件“图象经过点 A(c,2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同
22、的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。解答 (1)根据的图象经过点 A(c,2),图象的对称轴是 x=3,cbxxy221第-10-页 共 22 页得,3212,2212bcbcc解得.2,3cb所以所求二次函数解析式为图象如图所示。.23212xxy(2)在解析式中令 y=0,得,解得023212 xx.53,5321xx所以可以填“抛物线与 x 轴的一个交点的坐标是(3+”或“抛物线与 x 轴的一个交点的坐标是)0,5).0,53(令 x=3 代入解析式,得,25y所以抛物线的顶点坐标为23212xxy),25
23、,3(所以也可以填抛物线的顶点坐标为等等。)25,3(函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。用二次函数解决最值问题例 1 已知边长为 4 的正方形截去一个角后成为五边形 ABCDE(如图),其中 AF=2,BF=1试在 AB 上求一点 P,使矩形 PNDM 有最大面积【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力同时,也给学生探索解题思路留下了思维空间例 2 某产品每件成本 10 元,试销阶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 二次 函数 知识点 汇总 推荐 文档
限制150内