【精品文档】八年级数学下册专题提升三以特殊平行四边形为背景的计算与证明同步练习新版浙教版.pdf
《【精品文档】八年级数学下册专题提升三以特殊平行四边形为背景的计算与证明同步练习新版浙教版.pdf》由会员分享,可在线阅读,更多相关《【精品文档】八年级数学下册专题提升三以特殊平行四边形为背景的计算与证明同步练习新版浙教版.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、推荐学习K12 资料推荐学习K12 资料专题提升三以特殊平行四边形为背景的计算与证明类型一特殊平行四边形的阅读理解问题1.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形()A 平行四边形 B 矩形 C 菱形 D 以上答案都不对(2)如图,等腰RtABD中,BAD=90.若点 C为平面上一点,AC为凸四边形ABCD 的和谐线,且 AB=BC,请直接写出ABC的度数.2 一张长方形纸片,剪下一个正方形,剩下一个长方形,称为
2、第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;若在第n 次操作后,剩下的矩形为正方形,则称原矩形为n 阶奇异矩形如图 1,矩形 ABCD中,若 AB=2,BC=6,则称矩形ABCD 为 2 阶奇异矩形(1)判断与操作:如图2,矩形 ABCD 长为 5,宽为 2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由(2)探究与计算:已知矩形ABCD 的一边长为20,另一边长为a(a20),且它是3 阶奇异矩形,请画出矩形ABCD 及裁剪线的示意图,并在图的下方写出a 的值推荐学习K12 资料推荐学习K12 资料3.如图,ABC中
3、,已知 BAC 45,AD BC于 D,BD2,DC 3,求 AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出ABD、ACD的轴对称图形,D点的对称点为E、F,延长 EB、FC相交于 G点,求证:四边形AEGF 是正方形;(2)设 AD=x,建立关于x 的方程模型,求出x 的值.类型二特殊平行四边形的探究性问题4.如图,ABC中,点 O为 AC边上的一个动点,过点O作直线 MN BC,设 MN交 BCA的外角平分线 CF于点 F,交 ACB内角平分线CE于 E(1)求证:EO=FO;(2)当点
4、 O运动到何处时,四边形AECF是矩形?并证明你的结论;(3)若 AC边上存在点O,使四边形AECF 是正方形,猜想ABC的形状并证明你的结论.5.翻阅第四章同步,我们曾做过以下题目:推荐学习K12 资料推荐学习K12 资料在此基础上,思考并解答以下新问题:(1)当 BAC 60时,四边形ADEF是平行四边形吗?请说明理由;(2)当 ABC满足什么条件,四边形ADEF是菱形?请说明理由;(3)当 ABC满足什么条件,四边形ADEF是矩形?请说明理由;(4)当 ABC满足什么条件,四边形ADEF是正方形?请说明理由.6.(1)如图 1,在正方形ABCD中,E是 AB上一点,F 是 AD延长线上一
5、点,且DFBE.求证:CECF;(2)如图 2,在正方形ABCD中,E是 AB上一点,G是 AD上一点,如果GCE 45,请你利用(1)的结论证明:GE BEGD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在四边形ABCD中,AD BC,(BCAD),B90,AB BC,E 是 AB上一点,且 DCE 45,BE 4,DE 10,求四边形ABCD的面积7 如图,已知在Rt ABC中,ABC=90,C=30,AC=12cm,点 E从点 A出发沿 AB以每秒 1cm的速度向点B运动,同时点D 从点 C出发沿 CA以每秒 2cm的速度向点A运动,运动时间为t 秒(0t 6),
6、过点 D作 DF BC于点 F(1)试用含t 的式子表示AE、AD的长;推荐学习K12 资料推荐学习K12 资料(2)如图 1,在 D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;(3)如图 2,连结 DE,当 t 为何值时,DEF为直角三角形?(4)如图 3,将 ADE沿 DE翻折得到 ADE,试问当t 为何值时,四边形AEA D为菱形?8.如图,AB CD,点 E,F 分别在 AB,CD上,连结EF,AEF、CFE的平分线交于点G,BEF、DFE的平分线交于点H.(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作 MN EF,分别交AB,C
7、D于点 M,N,过 H作 PQ EF,分别交AB,CD于点 P,Q,得到四边形MNQP,此时,他猜想四边形MNQP 是菱形,请在下列框中补全他的证明思路.由 AB CD,MN EF,PQ EF,易证四边形MNQP是平行四边形,要证MNQP是菱形,只要证MN=NQ,由已知条件,MN EF,故只要证GM=FQ,即证 MGE QFH,易证、.故只要证MGE=QFH,易 证 MGE=GEF,QFH=EFH,即可得证.推荐学习K12 资料推荐学习K12 资料参考答案专题提升三以特殊平行四边形为背景的计算与证明1.(1)C 【点拨】根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品文档 精品 文档 八年 级数 下册 专题 提升 特殊 平行四边形 背景 计算 证明 同步 练习 新版 浙教版
限制150内