181勾股定理(1)上课课件.ppt
《181勾股定理(1)上课课件.ppt》由会员分享,可在线阅读,更多相关《181勾股定理(1)上课课件.ppt(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 读一读 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为周髀算经作法时给出的.图1-2是在北京召开的2002年国际数学家大会(TCM2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.图1-1图1-2hdzh 在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:“故折矩,勾广三,股修四,径隅五。”即:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。故称之为“勾股勾股定理定理”或“商高定理商高定理
2、”活动一:活动一:勾股定理勾股定理勾勾股股弦弦 在西方,希腊数学家欧几里德(在西方,希腊数学家欧几里德(EuclidEuclid,公元前三百年左右)在编著公元前三百年左右)在编著几何原本几何原本时,时,认为这个定理是毕达哥达斯最早发现的,所以认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为他就把这个定理称为“毕达哥拉斯定理毕达哥拉斯定理”,以,以后就流传开了。后就流传开了。毕达哥拉斯(毕达哥拉斯(PythagorasPythagoras)是古希腊数学)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五家,他是公元前五世纪的人,比商高晚出生五百多年。百多年。相传,毕达哥拉斯学派找到了
3、勾股定理的相传,毕达哥拉斯学派找到了勾股定理的证明后,欣喜若狂,杀了一百头牛祭神,由此,证明后,欣喜若狂,杀了一百头牛祭神,由此,又有又有“百牛定理百牛定理”之称。之称。毕达哥拉斯毕达哥拉斯(公元前公元前572-前前492年年),古希腊著名的哲学家、古希腊著名的哲学家、数学家、天文学家。数学家、天文学家。相传在相传在2500年前,年前,毕达哥拉斯毕达哥拉斯有有一次在朋友家做客时,发现朋友家用砖一次在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的铺成的地面中反映了直角三角形三边的某种数量关系,我们一起来观察图中的某种数量关系,我们一起来观察图中的地面,看看能发现什么。地面,看看能
4、发现什么。A、B、C的面积有什么关系?的面积有什么关系?直角三角形三边有什么关系?直角三角形三边有什么关系?ABC活动二:活动二:ABC图11(1)观察图)观察图11:正方形正方形A中含有中含有 个小个小方格,即方格,即A的面积是的面积是 个单位面积;个单位面积;正方形正方形B中含有中含有 个小个小方格,即方格,即B的面积是的面积是 个单位面积;个单位面积;正方形正方形C中含有中含有 个小个小方格,即方格,即C的面积是的面积是 个单位面积;个单位面积;99991818A的面积的面积+B的面积的面积=C的面积的面积图12ABC(2)观察图)观察图12:正方形正方形A中含有中含有 个小个小方格,即
5、方格,即A的面积是的面积是 个单位面积;个单位面积;正方形正方形B中含有中含有 个小个小方格,即方格,即B的面积是的面积是 个单位面积;个单位面积;正方形正方形C中含有中含有 个小个小方格,即方格,即C的面积是的面积是 个单位面积;个单位面积;444488A的面积的面积+B的面积的面积=C的面积的面积 因此可知等腰直角三角形有这因此可知等腰直角三角形有这样的性质:样的性质:对于任意直角三角形都有这样的性质吗对于任意直角三角形都有这样的性质吗?两直边的平方和等于斜边的平方两直边的平方和等于斜边的平方看下图看下图ABCA的面的面积积(单位单位长度长度)B的面的面积积(单位单位长度长度)C的面的面积
6、积(单位单位长度长度)图图1图图2A、B、C面积面积关系关系直角三直角三角形三角形三边关系边关系图图1图图2491392534sA+sB=sC 两直角边的平方和两直角边的平方和等于斜边的平方等于斜边的平方ABC问题:问题:你会用四个全等的直角三角形拼成哪些图形?你会用四个全等的直角三角形拼成哪些图形?abcabcabcabc活动三:勾股定理的证明活动三:勾股定理的证明勾股定理的证明方法很多,这里重点的勾股定理的证明方法很多,这里重点的介绍介绍面积证法面积证法。勾股定理的证法(一)勾股定理的证法(一)a a2 2+b+b2 2=c=c2 2(a+b)(a+b)2 2=c=c2 2+4+4.aba
7、b勾股定理的证法(二)勾股定理的证法(二)4 ab=4 ab=c2(ba)2a2+b2=c2Ccabcabcabcab(a+b)2=c2+4ab/2a2+2ab+b2=c2+2aba2+b2=c2大正方形的面积可以表示为大正方形的面积可以表示为 ;也可以表示为也可以表示为(a+b)2c2+4ab/2(2)美国总统证法:)美国总统证法:bcabcaABCDa+b=c 勾股定理(勾股定理(gou-gu theorem)gou-gu theorem)如果直角三角形两直角边分别为如果直角三角形两直角边分别为a、b,斜斜边为边为c,那么,那么即即 直角三角形两直角边的平方和等直角三角形两直角边的平方和等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 181 勾股定理 上课 课件
限制150内