正弦稳态电路幻灯片.ppt
《正弦稳态电路幻灯片.ppt》由会员分享,可在线阅读,更多相关《正弦稳态电路幻灯片.ppt(72页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正弦稳态电路1第1页,共72页,编辑于2022年,星期一学习目标正确理解正弦量的概念,牢记正弦量的三要素,学会比较相位。正确区分瞬时值、最大值、有效值和平均值。深刻理解正弦量的相量表示法。深刻理解和掌握交流电路中电阻、电容、电感元件上的电压、电流之间的有效值和相位关系;KVL、KCL的相量形式,并能对正弦稳态电路进行相关的分析、计算。2第2页,共72页,编辑于2022年,星期一正确区分瞬时功率、平均功率、有功功率、无功功率和视在功率,并会进行计算。掌握提高功率因数的方法。理解谐振现象,并掌握串联谐振和并联谐振的特点。能进行对称三相电路的计算3第3页,共72页,编辑于2022年,星期一4.1正弦
2、量的基本概念4.1.1正弦量的三要素若电压、电流是时间t的正弦函数,称为正弦交流电。以电流为例,正弦量的一般解析式为:波形如图4-1所示图4-1正弦量的波形4第4页,共72页,编辑于2022年,星期一图中Im叫正弦量的最大值,也叫振幅;角度叫正弦量的相位,当t=0时的相位叫初相位,简称初相;叫正弦量的角频率。因为正弦量每经历一个周期的时间T,相位增加2,则角频率、周期T和频率之间关系为:、T、反映的都是正弦量变化的快慢,越大,即越大或T越小,正弦量变化越快;越小,即越小或T越大,正弦量变化越慢。把振幅、角频率和初相称为正弦量的三要素。只有确定了三要素,正弦量才是确定的。5第5页,共72页,编辑
3、于2022年,星期一用正弦函数表示正弦波形时,把波形图上原点前后正负T/2内曲线由负变正经过零值的那一点作为正弦波的起点。初相角就是波形起点到坐标原点的角度,于是初相角不大于,且波形起点在原点左侧;反之。如图4-2所示,初相分别为0、由图可见,初相为正值的正弦量,在t=0时的值为正,起点在坐标原点之左;初相为负值后正弦量,在t=0时的值为负,起点在坐标原点之右。6第6页,共72页,编辑于2022年,星期一图4-27第7页,共72页,编辑于2022年,星期一4.1.2、同频率正弦量的相位差、同频率正弦量的相位差设有两个同频率的正弦量为叫做它们的相位差。正弦量的相位是随时间变化的,但同频率的正弦量
4、的相位差不变,等于它们的初相之差。初相相等的两个正弦量,它们的相位差为零,这样的两个正弦量叫做同相。同相的正弦量同时达到零值,同时达到最大值,步调一致。两个正弦量的初相不等,相位差就不为零,不同时达到最大值,步调不一致,8第8页,共72页,编辑于2022年,星期一如果,则表示i1超前i2;如果,则表示i1滞后i2,如果,则两个正弦量正交;如果,则两个正弦量反相。同频率正弦量的相位差,不随时间变化,与计时起点的选择无关。为了分析问题的方便,在一些有关的同频率正弦量中,可以选择其中的一个初相为零的正弦量为参考,其他正弦量的初相必须与这个参考正弦量的初相比较,即以其他正弦量的初相等于它们和参考正弦量
5、之间的相位差。在n个正弦量中,只能选择一个为参考正弦量。如图4-3(a)、(b)、(c)、(d)分别表示两个正弦量同相、超前、正交、反相。9第9页,共72页,编辑于2022年,星期一图4-3i1与i2同相、超前、正交、反相10第10页,共72页,编辑于2022年,星期一4.1.3 正弦电流、电压的有效值 1、有效值周期量的有效值定义为:一个周期量和一个直流量,分别作用于同一电阻,如果经过一个周期的时间产生相等的热量,则这个周期量的有效值等于这个直流量的大小。电流、电压有效值用大写字母I、U表示。根据有效值的定义,则有则周期电流的有效值为11第11页,共72页,编辑于2022年,星期一2、正弦量
6、的有效值对于正弦电流,设同理12第12页,共72页,编辑于2022年,星期一 4.2 正正 弦弦 量量 的的 相相 量量 表表 示示 法法4.2.1 复数的运算规律复数的运算规律复数的加减运算规律。两个复数相加(或相减)时,将实部与实部相加(或相减),虚部与虚部相加(或相减)。如:相加、减的结果为:A1A2=(a1+jb1)(a2+jb2)=(a1a2)+j(b1b2)复数乘除运算规律:两个复数相乘,将模相乘,辐角相加;两个复数相除,将模相除,辐角相减。如:13第13页,共72页,编辑于2022年,星期一因为通常规定:逆时针的辐角为正,顺时针的辐角为负,则复数相乘相当于逆时针旋转矢量;复数相除
7、相当于顺时针旋转矢量。特别地,复数的模为1,辐角为。把一个复数乘以就相当于把此复数对应的矢量反时针方向旋转角。14第14页,共72页,编辑于2022年,星期一4.2.2 正正 弦弦 量量 的的 相相 量量 表表 示示 设有一复数它和一般的复数不同,它不仅是复数,而且辐角还是时间的函数,称为复指数函数。因为由于可见A(t)的虚部为正弦函数。这样就建立了正弦量和复数之间的关系。为用复数表示正弦信号找到了途径。15第15页,共72页,编辑于2022年,星期一式中同理把这个复数分别称为正弦量的有效值相量和振幅相量。特别应该注意,相量与正弦量之间只具有特别应该注意,相量与正弦量之间只具有对应关系,而不是
8、相等的关系。对应关系,而不是相等的关系。例已知u1=141sin(t+60o)V,u2=70.7sin(t-45o)V。求:求相量;(2)求两电压之和的瞬时值u(t)(3)画出相量图解(1)16第16页,共72页,编辑于2022年,星期一(2)(3)相量图如图4-4所示图4-417第17页,共72页,编辑于2022年,星期一4.3基本元件基本元件VAR相量形式相量形式 和和KCL、KVL相量形式相量形式4.3.1 基本元件VAR的相量形式在交流电路中,电压和电流是变动的,是时间的函数。电路元件不仅有耗能元件的电阻,而且有储能元件电感和电容。下面分别讨论它们的伏安关系式(即VAR)的相量形式。1
9、、电阻元件根据欧姆定律得到上式表明电阻两端的正弦电压和流过的正弦电流是同相的,相量、波形图如图4-5所示。18第18页,共72页,编辑于2022年,星期一其相量关系为:图4-5电阻元件的电压、电流相量及波形图19第19页,共72页,编辑于2022年,星期一2、电容元件电容元件上电压、电流之间的相量关系式为:将上式改写为:通常把XC=定义为电容的容抗。在直流情况下,频率为零,电容相当于开路。20第20页,共72页,编辑于2022年,星期一图4-6电容元件的波形、相量图以上表明电容电流超前电容电压90,可以用相量图或波形图清楚地说明。如图4-6所示。21第21页,共72页,编辑于2022年,星期一
10、3、电感元件电感元件上电压、电流之间的相量关系式为:由上式可得U=LI=XLI上式表明电感上电流滞后电压为90。通常把XL=L定义为电感元件的感抗,它是电压有效值与电流有效值的比值即XL=L。对于一定的电感L,当频率越高时,其所呈现的抗感越大,反之越小。在直流情况下,频率为零,XL=0,电感相当于短路。22第22页,共72页,编辑于2022年,星期一图4-7电感元件的波形、相量图电感元件的波形、相量图如图4-7所示。可以看出,电感上电流滞后电压为90。23第23页,共72页,编辑于2022年,星期一4.3.2的相量形式 在正弦稳态电路中,在任一瞬间,由任一节点流出(或流入)的各支路电流相量的代
11、数和为零:在正弦稳态电路中的任一回路,在任一瞬间,沿回路各支路电压相量的代数和为零:24第24页,共72页,编辑于2022年,星期一4.4 复复 阻阻 抗抗 与与 复复 导导 纳纳4.4.1复阻抗设由R、L、C串联组成无源二端电路。如图4-8所示,流过各元件的电流都为I,各元件上电压分别为uR(t)、uL(t)、uC(t),端口电压为u(t)。图4-825第25页,共72页,编辑于2022年,星期一因为u(t)=uR(t)+uL(t)+uC(t)即所以26第26页,共72页,编辑于2022年,星期一上式是正弦稳态电路相量形式的欧姆定律。Z为该无源二端电路的复阻抗(或阻抗),它等于端口电压相量与
12、端口电流相量之比,当频率一定时,阻抗Z是一个复常数,可表示为指数型或代数型,即:式中Z称为阻抗的模,其中X=XL-XC称为电抗,电抗和阻抗的单位都是欧姆。称为阻抗角,它等于电压超前电流的相位角,即27第27页,共72页,编辑于2022年,星期一4.4.2复导纳复导纳对于如图4-9所示R、L、C并联电路,根据相量形式KCL,得到:图4-9RLC并联电路28第28页,共72页,编辑于2022年,星期一Y为无源二端电路的复导纳(或导纳),对于同一电路,导纳与阻抗互为倒数。Y称为导纳模,它等于阻抗模的倒数;对于同一电路,导纳模与阻抗模也互为倒数。称为导纳角,导纳角等于电流与电压的相位差,它也等于负的阻
13、抗角。29第29页,共72页,编辑于2022年,星期一4.5正弦稳态电路分析对于线性正弦稳态电路有 所以线性电阻电路的各种分析方法和电路定理可以推广用于线性电路的正弦稳态分析。具体方法是所有电压、电流用相量形式,元件用阻抗或导纳,画出电路的相量模型,从而建立相量形式的代数方程。30第30页,共72页,编辑于2022年,星期一4.6 正正 弦弦 稳稳 态态 中中 的的 功功 率率4.6.1R、L、C元件的功率和能量1.电阻元件的功率设正弦稳态电路中,在关联参考方向下,瞬时功率为pR(t)=u(t)i(t)设流过电阻元件的电流为iR(t)=ImsintA其电阻两端电压为uR(t)=Im Rsint
14、=UmsintV则瞬时功率为31第31页,共72页,编辑于2022年,星期一pR(t)=u(t)i(t)=2URIRsin2t=URIR(1-cos2t)W由于cos2t1,故此pR(t)=URIR(1-cos2t)0其瞬时功率的波形图如4-10所示。由图可见,电阻元件的瞬时功率是以两倍于电压的频率变化的,而且pR(t)0,说明电阻元件是耗能元件。图4-10电阻元件的瞬时功率32第32页,共72页,编辑于2022年,星期一电阻的平均功率可见对于电阻元件,平均功率的计算公式与直流电路相似。2.电感元件的功率电感元件的功率在关联参考方向下,设流过电感元件的电流为则电感电压为:33第33页,共72页
15、,编辑于2022年,星期一其瞬时功率为上式表明,电感元件的瞬时功率也是以两倍于电压的频率变化的;且pL(t)的值可正可负,其波形图如图4-11所示。图4-11电感元件的瞬时功率34第34页,共72页,编辑于2022年,星期一从图上看出,当uL(t)、iL(t)都为正值时或都为负值时,pL(t)为正,说明此时电感吸收电能并转化为磁场能量储存起来;反之,当pL(t)为负时,电感元件向外释放能量。pL(t)的值正负交替,说明电感元件与外电路不断地进行着能量的交换。电感消耗的平均功率为:电感消耗的平均功率为零,说明电感元件不消耗功率,只是与外界交换能量。35第35页,共72页,编辑于2022年,星期一
16、3电容元件的功率电容元件的功率在电压、电流为关联参考方向下,设流过电容元件的电流为:则电容电压为:其瞬时功率为:36第36页,共72页,编辑于2022年,星期一 uc(t)、Ic(t)、pc(t)的波形如图4-12所示。图4-12电容元件的瞬时功率37第37页,共72页,编辑于2022年,星期一从图上看出,pc(t)、与pL(t)波形图相似,电容元件只与外界交换能量而不消耗能量。电容的平均功率也为零,即:电感元件以磁场能量与外界进行能量交换,电容元件是以电场能量与外界进行能量交换。38第38页,共72页,编辑于2022年,星期一 4.6.2 二端电路的功率1.瞬时功率在图4-13所示二端电路中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 稳态 电路 幻灯片
限制150内