【教学课件】第三章离散付里叶变换(DFT)DiscreteFourierTransform.ppt
《【教学课件】第三章离散付里叶变换(DFT)DiscreteFourierTransform.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第三章离散付里叶变换(DFT)DiscreteFourierTransform.ppt(169页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三章第三章离散付里叶变换离散付里叶变换(DFT)Discrete Fourier Transform第一节第一节 引引 言言一、序列分类一、序列分类对一个序列长度未加以任何限制,则一个序列可分为:无限长序列:n=-或n=0或n=-0有限长序列:0nN-1有限长序列在数字信号处理是很重要的一种序列。由于计算机容量的限制,只能对过程进行逐段分析。二、二、DFT引入引入由于有限长序列,引入DFT(离散付里叶变换)。DFT它是反映了“有限长有限长”这一特点的一种有用工具。DFT变换除了作为有限长序列的一种付里叶表示,在理论上重要之外,而且由于存在着计算计算机机DFT的有效快速算法的有效快速算法-FF
2、T,因而使离散付里叶变换(DFT)得以实现,它使DFT在各种数字信号处理的算法中起着核心的作用。三、本章主要讨论三、本章主要讨论离散付里叶变换的推导离散付里叶变换的有关性质离散付里叶变换逼近连续时间信号的问题序列的抽取与插值第二节付里叶变换的几种形式一、引言傅 里 叶 变 换:建 立 以 时时 间间t 为 自 变 量 的“信 号”与 以 频频 率率 f为 自 变 量 的“频 率 函 数”(频谱)之 间 的 某 种 变 换 关 系.所 以“时 间”或“频 率”取 连 续 还 是 离 散 值,就 形 成 各 种 不 同 形 式 的 傅 里 叶 变 换 对。在 深 入 讨 论 离 散 傅 里 叶 变
3、 换 D F T 之 前,先 概 述 四种 不 同 形式 的 傅 里 叶 变 换 对 二、四种不同付里叶变换对1、傅 里 叶 级 数(FS):连 续 时 间,离 散 频 率 的 傅 里 叶 变 换。2、傅 里 叶 变 换(FT):连 续 时 间,连 续 频 率 的 傅 里 叶 变 换。3、序 列 的 傅 里 叶 变 换(DTFT):离 散 时 间,连 续 频 率 的 傅 里 叶 变 换.4、离 散 傅 里 叶 变 换(DFT):离 散 时 间,离 散 频 率 的 傅 里 叶 变 换假定数字频率为w,模拟频率为。1.傅 里 叶 级 数(FS)周期连续时间信号 非周期离散频谱函数。周期为T0的周期
4、性连续时间函数 x(t)可展成傅里叶级数X(jk0),是离散非周期性频谱,表 示为:FS例子通过以下 变 换 对 可 以 看 出 时 域 的 连 续 函 数 造 成 频 域 是 非 周 期 的 频 谱 函 数,而 频 域 的 离 散 频 谱 就 与 时 域 的 周 期 时 间 函 数 对 应.(频域采样,时域周期延 拓)2.傅 里 叶 变 换(FT)非周期连续时间信号通过连续付里叶变换(FT)得到非周期连续频谱密度函数。例子以下变换对可以看出时域 连 续 函 数 造成频域是非周期的谱,而时域的非周期造成频域是连续的谱.3.序 列 的 傅 里 叶 变 换(DTFT)非周期离散的时间信号(单位圆上
5、的Z变换(DTFT)得到周期性连续的频率函数。例子同样可看出,时域的离散造成频域的周期延拓,而时域的非周期对应于频域的连续.4.离 散 傅 里 叶 变 换(DFT)上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时 域 或 频 域)中,函 数 是 连 续 的.因 为 从 数 字 计 算 角 度,我 们 感 兴 趣 的 是 时 域 及 频 域 都 是 离 散 的 情 况,这 就 是 我 们 这 里 要 谈 到 的 离 散 傅 里 叶 变 换.周期性离散时间信号从上可以推断:周期性时间信号可以产生频谱是离散的 离散时间信号可以产生频谱是周期性的。得出其频谱为周期性离散的。也即
6、我们所希望的。总之,一个域的离散必然造成另一个域的周期延拓。其中正变换:反变换:二、四种付里叶变换形式的归纳周期()和连续离散(T)和非周期周期()和离散离散(T)和周期非周期和连续连续和非周期非周期和离散连续和周期(T)频谱频谱函数时间时间函数作业参看程佩青的光盘第三章的第一节付里叶变换的四种可能形式的测验题。第三节离散付里叶级数(DFS)我 们 先 从 周 期 性 序 列 的 离 散 傅 里 叶 级 数(DFS)开 始 讨 论,然 后 再 讨 论 可 作 为 周 期 函 数 一 个 周 期 的 有 限 长 序 列 的 离 散 傅 里 叶 变 换(DFT).一、引言二、DFS定义反变换:三、
7、DFS离散付里级数的推导意义用数字计算机对信号进行频谱分析时,要求信号必须以离散值作为输入,而且上面讨论可知:只有第四种形式(DFS)对数字信号处理有实用价值。但如果将前三种形式要么在时域上采样,要么在频域上采样,变成离散函数,就可以在计算机上应用。所以我们要先了解如何从以上三种形式推出DFS.1.由非周期连续时间信号推出DFSx(t)经过抽样为x(nT),对离散的时间信号进行DTFT得到周期连续频谱密度函数。再经过抽样,得到周期性离散频谱密度函数即为DFS.x(t)t取样x(t)tDTFTX(ejT)采样X(ejw)w2.周期性连续时间信号函数周期性连续时间信号函数经采样后,得到周期性的离散
8、时间函数(DFS)。x(t)X(ejw)tw采样x(n)nDFS3.非周期离散时间信号非周期离散时间信号经过序列付里时变换(即单位园上的Z变换)DTFT,得到周期连续谱密度函数,再经采样为周期离散频谱密度函数(DFS)。x(t)tX(ejT)wX(ejw)DTFT采样四、推导DFS正变换 以下由第三种付里叶级数形式为例推导出离散付里叶级数变换。非周期信号x(n),其DTFT(单位园上Z变换)为 其为周期连续频谱密度函数,对其频域进行采样,使其成为周期性离散频谱函数。设在一周期内采样N个点,则两采样点间距为即得出DFS的正变换:得到各抽样频点频率为:代入DTFT式子中,这时由于抽样,信号变成周期
9、离散信号 ,得五、DFS的反变换解:已知两边同乘以 ,并对一个周期求和根据正交定理用n替换r,可得:即得:六、回顾DFS设 x(n)为周 期 为 N 的 周 期 序 列,则 其 离 散 傅 里 叶 级 数(DFS)变 换 对 为:正 变 换反变 换第四节离散付里叶级数的性质一、引言可以由抽样Z变换来解析DFS,它的许多性质与Z变换性质类似。它们与Z变换主要区别为:(1)与 两者具有周期性,与Z变换不同。(2)DFS在时域和频域之间具有严格的对偶关系。它们主要性质分为:线性、序列移位(循环移位)、调制性、周期卷积和假设令 和 皆是周期为N的周期序列,它们各自的DFS为(1)线性 其中a,b为任意
10、常数,所得到的频域序列也是周期序列,周期为N。(2)序列移位(循环、移位)时域证明:令 i=n+m,得证毕(3)调制性频域证明:(4)时域卷积 周期卷积和与以前卷积不同,它的卷积过程限在一个周期内称为周期卷积。频域相乘等于时域卷积(指周期卷积)。频域相乘等于时域卷积(指周期卷积)。频域:则有:相乘时域卷积 证明:代入:则:(5)频域卷积时域:相乘周期卷积频域:作业第133页:第1、2题第五节离散付里叶变换DFT一、由DFS引出DFT的定义周期序列实际上只有有限个序列值才有意义,因 而它的离散傅里叶级数表示式也适用于有限长 序列,这就得到有限长序列的傅里叶变换(DFT).具体而言,我们把:(1)
11、时域周期序列看作是有限 长序列x(n)的周期延拓;(2)把频域周期序列看作是有限长序列X(k)的周期延拓.(3)这样我们只要把DFS的定义式两边(时域、频域)各取主值区间,就得到关于有限长序列的时频域的对应变换对.这就是数字信号处理课程里最重要的变换-离 散 傅 里 叶 变 换(DFT).二、DFT定义正变换反变换X(k)、x(n)为有限长序列的离散付里叶变换对,已知其中一个序列就能确定另一个序列。注意在 离 散 傅 里 叶 变 换 关 系 中,有 限 长 序 列 都 作 为 周 期 序 列 的 一 个 周 期 来 表 示,都 隐 含 有 周 期 性 意 义.三、DFT涉及的基本概念1.主 值
12、(主值区间、主值序列)2.移 位(线性移位、圆周移位)3.卷 积(线性卷积、圆周卷积)4.对 称(序列的对称性、序列的对称分量)5.相 关(线性相关、圆周相关)1.主 值(主值区间、主值序列)2.移位线线 性性 移移 位:位:序 列 沿 坐 标 轴 的 平 移.圆周移位:圆周移位:将 有 限 长 序 列 x(n)以 长 度 N 为 周 期,延 拓 为 周 期 序 列,并 加 以 线 性 移 位 后,再 取 它 的 主 值 区 间 上 的 序 列 值,m 点 圆 周 移 位 记 作:其 中(.)N 表 示 N 点 周 期 延 拓.(1)有 限 长 序 列 圆 周 移 位 的 实 现 步 骤(2)
13、例子12131 0.5(1)周期延拓:N=5时nx(n)2131x(n)0.521310.51120.5n(2)周期延拓:N=6 时,补零加长2131x(n)0.521310.51123n32131 0.5nx(n)(3)m=1时,左移(取主值)131x(n)0.52(4)m=-2时,右移(取主值)2131nx(n)0.5n 3.卷 积卷积在此我们主要介绍:(1)线性卷积(2)圆周卷积(3)圆周卷积与线性卷积的性质对比(1)线性卷积线 性 卷 积 定 义:有 限 长 序 列 x1(n),0nN1-1;x2(n),0nN2-1则 线 性 卷 积 为 注意:线 性 卷 积 结 果 长 度 变 为
14、N1+N2-1.(2)圆周卷积令则圆 周 卷 积 结 果 长 度 不 变,为 N.圆 周 卷 积 的 实 现 步 骤例子线性卷积与圆周卷积步骤比较231x(n)54n0N1=5213h(n)n0N2=3得到线性卷积线性卷积结果的示意图14265ny(n)2014830 5 4 3 2 1 1 2 3 15 12 9 6 3 10 8 6 4 2 5 4 3 2 1 5 14 26 20 14 8 3N=7231x(n)54n0N1=5213h(n)n0N2=3(1)圆周卷积圆周卷积:(N=7)补零加长 231x(k)540N=7k213h(k)k0N2=3231h(k)0k(2)圆周卷积需进行
15、周期延拓,而线卷积无需周期延拓:圆卷积的反折(并取主值区间):231231231h(-k)k0(3)平移0231h(1-k)k(4)相乘x(k)h(-k)=51=5x(k)h(1-k)=5*2+4*1=14x(k)h(2-k)=5*3+4*2+3*1=26231x(k)540N=7kx(k)h(3-k)=4*3+3*2+2*1=20 x(k)h(4-k)=3*3+2*2+1*1=14x(k)h(5-k)=2*3+1*2=8x(k)h(6-k)=1*3=3231h(-k)k(5)相加得到圆周卷积的示意图14265ny(n)2014830可见可见,线性卷积与圆周卷积相同线性卷积与圆周卷积相同(当当
16、NN1(5)+N2(3)-1=7时时)课后练习用图表求解圆卷积 x(k)=5,4,3,2,1,h(n)=1,2,3,同上求N=7点的圆卷积。解:(1)将x(n)补零加长为x(k)=5,4,3,2,1,0,0,(2)将h(n)补零加长至N=7,并周期延拓,(3)反折得到:h(-k)=1,0,0,0,0,3,2(4)作图表结果同上。若圆周卷积取长度为N=5,则求圆周卷积231x(k)540N=5k231h(-k)k0求得圆周卷积x(k)h(-k)=5*1+2*3+1*2=13x(k)h(1-k)=5*2+4*1+1*3=17x(k)h(2-k)=5*3+4*2+3*1=26x(k)h(3-k)=4
17、*3+3*2+2*1=20 x(k)h(4-k)=3*3+2*2+1*1=14看出圆卷积与线卷积不同.171326y(n)n02014用图表求解圆卷积 x(k)=5,4,3,2,1,h(n)=1,2,3,同上求N=5点的圆卷积。解:(1)x(n)无需补零加长x(k)=5,4,3,2,1,(2)将h(n)补零加长至N=5,并周期延拓,(3)反折得到:h(-k)=1,0,0,3,2(4)作图表1713262014y(n)n0作业2P133 第3,4,7,8,9,10题参看程佩青的光盘中第三章的离散付里叶图形的测验第1第2题(3)圆 周 卷 积 与 线 性 卷 积 的 性 质 对 比 圆周卷积线性卷
18、积是针对FFT引出的一种表示方法表示方法信号通过线性系统时,信号输出等于输入与系统单位冲输入与系统单位冲激响应的卷积激响应的卷积两序列长度必须相等相等,不等时按要求补足零值点补足零值点。两序列长度可以不等不等。如x1(n)为 N1点,x2(n)为 N2点卷积结果长度与两信号长度相等皆为N卷积结果长度为N=N1+N2-14.对称分为:(1)序列的对称性(2)序列的对称分量(1)序列的对称性(a)奇 对 称(序 列)和 偶 对 称(序 列)(b)圆 周 奇 对 称(序 列)和 圆 周 偶 对 称(序 列)(c)共 轭 对 称(序列)和 共 轭 反 对 称(序 列)(d)圆 周 共 轭 对 称(序列
19、)和 圆 周 共 轭 反 对 称(序 列)(a)奇 对 称(序 列)和 偶 对 称(序 列)4、满 足xe(n)=xe(-n)的 序 列 xe(n)称 为 偶偶 对对 称称 序序 列列1、x(n)与-x(-n)互称为奇对称奇对称。2、满足x0(n)=-x0(-n)的序列x0(n)称为称为奇对称序列奇对称序列。3、x(n)与 x(-n)互称为 偶偶 对对 称称;例子0 xe(n)n0 x(n)n0y(n)=x(-n)nx(n)与y(n)互为偶对称为偶对称序列0 x(n)n0 x(-n)n互为奇对称0 xo(n)n为奇对称序列(b)圆 周 奇 对 称(序 列)和 圆 周 偶 对 称(序 列)1、长
20、 度 为N的 有 限 长 序 列 x(n)与y(n)=-x(-n)NRN(n)互 为 圆圆 周周 奇奇 对对 称称.2、长 度 为 N 的 有 限 长 序 列x(n)若 满 足 x(n)=-x(-n)NRN(n)则x(n)是 圆圆 周周 奇奇 对对 称称 序序 列列.x(n)y(n)=-x(-n)NRN(n)x(n)与y(n)互 为 圆圆 周周 奇奇 对对 称称.圆 周 奇 对 称圆 周 奇 对 称(序 列)x(n)4、长 度 为 N 的 有 限 长 序 列 xe(n),若 满 足 x(n)=x(-n)NRN(n)则 x(n)是 圆圆 周周 偶偶 对对 称称 序序 列列.3、长 度 为 N 的
21、 有 限 长 序 列 x(n)与y(n)=x(-n)NRN(n)互 为 圆圆 周周 偶偶 对对 称称.圆 周 偶 对 称(序 列)周期延拓判断 序列的圆周奇偶对称性的简便方法在n=N处补上补上与n=0处相同的序列值:(1)如果此新的序列对n=N/2是偶对称,则原序列一定为圆周偶对称序列。(2)如果此新的序列对n=N/2是奇对称,则原序列一定为圆周奇对称序列。(c)共 轭 对 称(序列)和 共 轭 反 对 称(序 列)1、序 列 x(n)与y(n)=x*(-n)互 为 共共 轭轭 对对 称称.2、共共 轭轭 对对 称称 序序 列列:一个序列x(n),其满足xe(n)=x*e(-n),即称此序列为
22、共轭对称序列共轭对称序列。对 于 实 序 列 来 说,这 一 条 件 变 成 xe(n)=xe(-n),即 为 偶偶 对对 称称 序序 列列.(c)共 轭 对 称(序列)和 共 轭 反 对 称(序 列)4、共共 轭轭 反反 对对 称称 序序 列列:若一序列x(n),其满足xo(n)=-x*o(-n),称此序列为共共 轭轭 反反 对对 称称 序序 列列 对 于 实 序列 来 说 ,即 为 xo(n)=-xo(-n)奇奇 对对 称称 序序 列列.3、两序列 x(n)与y(n)若满足y(n)=-x*(-n)则互为共共 轭轭 反反 对对 称称.(d)圆 周 共 轭 对 称(序列)和 圆 周 共 轭 反
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学课件 教学 课件 第三 离散 付里叶 变换 DFT DiscreteFourierTransform
链接地址:https://www.taowenge.com/p-69864600.html
限制150内