八下数学:17.2.1-勾股定理的逆定理课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《八下数学:17.2.1-勾股定理的逆定理课件.ppt》由会员分享,可在线阅读,更多相关《八下数学:17.2.1-勾股定理的逆定理课件.ppt(67页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、17.2勾股定理的逆定理第十七章 勾股定理导入新课讲授新课当堂练习课堂小结第1课时勾股定理的逆定理学习目标1.掌握勾股定理逆定理的概念并理解互逆命题、定理的概念、关系及勾股数.(重点)2.能证明勾股定理的逆定理,能利用勾股定理的逆 定理判断一个三角形是直角三角形.(难点)导入新课导入新课B CA 问题1勾股定理的内容是什么?如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.bca问题2求以线段a、b为直角边的直角三角形的斜边c的长:a3,b4;a2.5,b6;a4,b7.5.c=5c=6.5c=8.5复习引入思考以前我们已经学过了通过角的关系来确定直角三角形,可不可以通
2、过边来确定直角三角形呢?同学们你们知道古埃及人用什么方法得到直角的吗?(1)(2)(3)(4)(5)(6)(7)(8)(13)(12)(11)(10)(9)打13个等距的结,把一根绳子分成等长的12段,然后以3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.情景引入思考:从前面我们知道古埃及人认为一个三角形三边长分别为3,4,5,那么这个三角形为直角三角形.按照这种做法真能得到一个直角三角形吗?大禹治水相传,我国古代的大禹在治水时也用了类似的方法确定直角.讲授新课讲授新课勾股定理的逆定理一下面有三组数分别是一个三角形的三边长a,b,c:5,12,13;7,24,25;8,
3、15,17.问题分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?是下面有三组数分别是一个三角形的三边长a,b,c:5,12,13;7,24,25;8,15,17.问题2这三组数在数量关系上有什么相同点?5,12,13满足52+122=132,7,24,25满足72+242=252,8,15,17满足82+152=172.问题3古埃及人用来画直角的三边满足这个等式吗?32+42=52,满足.a2+b2=c2我觉得这个猜想不准确,因为测量结果可能有误差.我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.问题3据此你有什么猜想呢?由上面几个例子,我们猜想:命题2如
4、果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.ABC ABC?C是直角ABC是直角三角形ABCa b c 已知:如图,ABC的三边长a,b,c,满足a2+b2=c2求证:ABC是直角三角形构造两直角边分别为a,b的RtABC证一证:证明:作RtABC,使C=90,AC=b,BC=a,ABC ABC(SSS),C=C=90,即ABC是直角三角形.则ACaBbc勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2那么这个三角形是直角三角形.ACBabc勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,
5、即可判断此三角形为直角三角形,最长边所对应的角为直角.特别说明:归纳总结例1下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a=15,b=8,c=17;解:(1)152+82=289,172=289,152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形,且C是直角.(2)a=13,b=14,c=15.(2)132+142=365,152=225,132+142152,不符合勾股定理的逆定理,这个三角形不是直角三角形.根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.归纳【变式题1】若ABC的三
6、边a,b,c满足a:b:c=3:4:5,是判断ABC的形状.解:设a=3k,b=4k,c=5k(k0),(3k)2+(4k)2=25k2,(5k)2=25k2,(3k)2+(4k)2=(5k)2,ABC是直角三角形,且C是直角.已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.归纳(2)若ABC的三边a,b,c满足a2+b2+c2+50=6a+8b+10c.试判断ABC的形状.解:a2+b2+c2+50=6a+8b+10c,a26a+9+b28b+16+c210c
7、+25=0.即(a3)+(b4)+(c5)=0.a=3,b=4,c=5,即a2+b2=c2.ABC是直角三角形.例2如图,在正方形ABCD中,F是CD的中点,E为BC上一点,且CECB,试判断AF与EF的位置关系,并说明理由解:AFEF.理由如下:设正方形的边长为4a,则ECa,BE3a,CFDF2a.在RtABE中,得AE2AB2BE216a29a225a2.在RtCEF中,得EF2CE2CF2a24a25a2.在RtADF中,得AF2AD2DF216a24a220a2.在AEF中,AE2EF2AF2,AEF为直角三角形,且AE为斜边AFE90,即AFEF.练一练1.下列各组线段中,能构成直
8、角三角形的是()A2,3,4B3,4,6C5,12,13D4,6,7C2.一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是()A4B3C2.5D2.4D3.若ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则ABC是_.等腰三角形或直角三角形如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.勾股数二概念学习常见勾股数:3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.勾股数拓展性质:一组勾股数,都扩大相同倍数k(k为正整数),得到一
9、组新数,这组数同样是勾股数.下列各组数是勾股数的是()A.6,8,10B.7,8,9C.0.3,0.4,0.5D.52,122,132A方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.练一练命题1如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.命题2如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.前面我们学习了两个命题,分别为:互逆命题与互逆定理三命题1:直角三角形a2+b2=c2命题2:直角三角形a2+b2=c2题设结论它们是题设和结论正好相反的两个命题.问题1两个命题的条件和
10、结论分别是什么?问题2两个命题的条件和结论有何联系?一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理.勾股定理与勾股定理的逆定理为互逆定理.题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.归纳总结说出下列命题的逆命题,这些逆命题成立吗?(1)两条直线平行,内错角相等;(2)如果两个实数相等,那么它们的绝对值相等;(3)全等三角形的对应角相等;(4)在角的内部,到角的两边距离相等的点在角的平分线上.内错角相等,两条直线平行.如果两个实数的绝对值相等,那么它们相等
11、.对应角相等的三角形全等.在角平分线上的点到角的两边距离相等.成立不成立不成立成立练一练当堂练习当堂练习1.下列各组数是勾股数的是()A.3,4,7B.5,12,13C.1.5,2,2.5D.1,3,52.将直角三角形的三边长扩大同样的倍数,则得到的三角形()A.是直角三角形B.可能是锐角三角形C.可能是钝角三角形D.不可能是直角三角形BA3.在ABC中,A,B,C的对边分别a,b,c.若C-B=A,则ABC是直角三角形;若c2=b2-a2,则ABC是直角三角形,且C=90;若(c+a)(c-a)=b2,则ABC是直角三角形;若A:B:C=5:2:3,则ABC是直角三角形.以上命题中的假命题个
12、数是()A.1个B.2个C.3个D.4个A4.已知a、b、c是ABC三边的长,且满足关系式,则ABC的形状是_等腰直角三角形5.(1)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_cm;12(2)“等腰三角形两底角相等”的逆定理为_有两个角相等的三角形是等腰三角形6.已知ABC,AB=n-1,BC=2n,AC=n+1(n为大于1的正整数).试问ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.解:AB+BC=(n-1)+(2n)=n4-2n+1+4n=n4+2n+1=(n+1)=AC,ABC直角三角形,边AC所对的角是直角.7.如图,在四边形A
13、BCD中,AB=8,BC=6,AC=10,AD=CD=,求四边形ABCD的面积.ABC是直角三角形且B是直角.ADC是直角三角形且 D是直角,S 四边形ABCD=课堂小结课堂小结勾股定理的逆定理内 容作用从三边数量关系判定 一 个 三 角 形 是否是直角形三角形.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.注意最长边不一定是c,C也不一定是直角.勾股数一定是正整数导入新课讲授新课当堂练习课堂小结19.3 课题学习 选择方案第十九章 一次函数情境引入学习目标1会用一次函数知识解决方案选择问题,体会函数模型思想;(重点、难点)2能从不同的角度思考问题,优化解决问题
14、的方法;3能进行解决问题过程的反思,总结解决问题的方法导入新课导入新课讲授新课讲授新课选择方案问题1怎样选取上网收费方式?收费方式月使用费/元包时上网时间/时超时费/(元/分)A30250.05B50500.05C120不限时下表给出A,B,C三种上宽带网的收费方式.1.哪种方式上网费是会变化的?哪种不变?A、B会变化,C不变2.在A、B两种方式中,上网费由哪些部分组成?上网费=月使用费+超时费3.影响超时费的变量是什么?上网时间4.这三种方式中有一定最优惠的方式吗?没有一定最优惠的方式,与上网的时间有关收费方式月使用费/元包时上网时间/时超时费/(元/分)A30250.05B50500.05
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 17.2 勾股定理 逆定理 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内