《(精品)17.2_实际问题与反比例函数(1).ppt》由会员分享,可在线阅读,更多相关《(精品)17.2_实际问题与反比例函数(1).ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十七章第十七章 反比例函数反比例函数挑战记忆挑战记忆:反比例函数图象有哪些性质反比例函数图象有哪些性质?(1)反比例函数反比例函数 是由两支曲线组成是由两支曲线组成;(2)当当K0时时,两支曲线分别位于两支曲线分别位于第一、三第一、三象象限内,在限内,在每一象限每一象限内,内,y随随x的的增大增大而而减少减少;(3)当当K0时时,两支曲线分别位于两支曲线分别位于第二、四第二、四象象限内限内,在在每一象限每一象限内内,y随随x的的增大增大而而增大增大.巩固巩固1.有体积为有体积为100cm3的长方体,其底面积的长方体,其底面积S(cm2)与高与高h(cm)的函数关系式为的函数关系式为 。2.甲
2、、乙两地相距甲、乙两地相距100(km),某汽车从,某汽车从甲地行往乙地的平均速度为甲地行往乙地的平均速度为v(km/h),则所需的时间则所需的时间t(h)与与v 的函数关系式的函数关系式为为 。3.已知圆柱的侧面积是已知圆柱的侧面积是10cm2,若圆,若圆柱底面半径为柱底面半径为r cm,高为,高为hcm,则,则h与与r的函数是的函数是_例例1:市煤气公司要在地下修建一个容积为市煤气公司要在地下修建一个容积为市煤气公司要在地下修建一个容积为市煤气公司要在地下修建一个容积为10104 4mm3 3 的的的的圆柱形煤气储存室圆柱形煤气储存室圆柱形煤气储存室圆柱形煤气储存室.(1)(1)储存室的底
3、面积储存室的底面积储存室的底面积储存室的底面积S(S(单位单位单位单位:m:m2 2)与其深度与其深度与其深度与其深度d(d(单位单位单位单位:m):m)有怎有怎有怎有怎样的函数关系样的函数关系样的函数关系样的函数关系?解解解解:(1)(1)根据圆柱体的体积公式根据圆柱体的体积公式根据圆柱体的体积公式根据圆柱体的体积公式,我们我们我们我们有有有有 sd=104变形得:变形得:变形得:变形得:答:答:答:答:储存室的底面积储存室的底面积储存室的底面积储存室的底面积S S是其深度是其深度是其深度是其深度d d的的的的反比例函数反比例函数反比例函数反比例函数.dS解解解解:(2)(2)把把把把S=5
4、00S=500代入代入代入代入 ,得:得:得:得:答答答答:如果把储存室的底面积定为如果把储存室的底面积定为如果把储存室的底面积定为如果把储存室的底面积定为500 ,500 ,施工时施工时施工时施工时 应向地下掘进应向地下掘进应向地下掘进应向地下掘进20m20m深深深深.(2)(2)公司决定把储存室的底面积公司决定把储存室的底面积公司决定把储存室的底面积公司决定把储存室的底面积S S定为定为定为定为500 m500 m2 2,施工施工施工施工 队施工时应该向下掘进多深队施工时应该向下掘进多深队施工时应该向下掘进多深队施工时应该向下掘进多深?解得:解得:解得:解得:解解解解:(3)(3)根据题意
5、根据题意根据题意根据题意,把把把把d=15d=15代入代入代入代入 ,得:得:得:得:解得:解得:解得:解得:S666.67S666.67答答答答:当储存室的深为当储存室的深为当储存室的深为当储存室的深为15m15m时时时时,储存室的底面积应改为储存室的底面积应改为储存室的底面积应改为储存室的底面积应改为666.67 666.67 才能满足需要才能满足需要才能满足需要才能满足需要.(3)(3)当施工队按当施工队按当施工队按当施工队按(2)(2)中的计划掘进到地下中的计划掘进到地下中的计划掘进到地下中的计划掘进到地下15m15m时时时时,碰碰碰碰上了坚硬的岩石上了坚硬的岩石上了坚硬的岩石上了坚硬
6、的岩石.为了节约建设资金为了节约建设资金为了节约建设资金为了节约建设资金,储存室的底面储存室的底面储存室的底面储存室的底面积应改为多少才能满足需要积应改为多少才能满足需要积应改为多少才能满足需要积应改为多少才能满足需要(保留两位小数保留两位小数保留两位小数保留两位小数)?)?随堂练习随堂练习1 1(1)(1)已知某矩形的面积为已知某矩形的面积为已知某矩形的面积为已知某矩形的面积为20cm20cm2 2,写出其长写出其长写出其长写出其长y y与宽与宽与宽与宽x x之间之间之间之间的函数表达式的函数表达式的函数表达式的函数表达式;(2)(2)当矩形的长为当矩形的长为当矩形的长为当矩形的长为12cm
7、12cm是是是是,求宽为多少求宽为多少求宽为多少求宽为多少?当矩形的当矩形的当矩形的当矩形的 宽为宽为宽为宽为4cm,4cm,其长为多少其长为多少其长为多少其长为多少?(3)(3)如果要求矩形的长不小于如果要求矩形的长不小于如果要求矩形的长不小于如果要求矩形的长不小于8cm,8cm,其宽至多要多少其宽至多要多少其宽至多要多少其宽至多要多少?1.某蓄水池的排水管每时排水某蓄水池的排水管每时排水8m3,6h可将满池水全可将满池水全部排空部排空.(1)蓄水池的容积是多少蓄水池的容积是多少?解解:蓄水池的容积为蓄水池的容积为:86=48(m6=48(m3 3).).(2)如果增加排水管如果增加排水管,
8、使每时的排水量达到使每时的排水量达到Q(m3),那那么将满池水排空所需的时间么将满池水排空所需的时间t(h)将如何变化将如何变化?答答:此时所需时间此时所需时间t(h)将减少将减少.(3)写出写出t与与Q之间的函数关系式之间的函数关系式;解解:t与与Q之间的函数关系式为之间的函数关系式为:想一想:想一想:1.某蓄水池的排水管每时排水某蓄水池的排水管每时排水8m3,6h可将满池水全可将满池水全部排空部排空.解解:当当t=5h时时,Q=48/5=9.6m3.所以每时的排水量至所以每时的排水量至少为少为9.6m3.(5)已知排水管的最大排水量为每时已知排水管的最大排水量为每时12m3,那么最少那么最
9、少多长时间可将满池水全部排空多长时间可将满池水全部排空?解解:当当Q=12(m3)时时,t=48/12=4(h).所以最少需所以最少需4h可将满池水全部排空可将满池水全部排空.(4)如果准备在如果准备在5h内将满池水排空内将满池水排空,那么每时的排水那么每时的排水量至少为多少量至少为多少?(3)写出写出t与与Q之间的函数关系式之间的函数关系式;解解:t与与Q之间的函数关系式为之间的函数关系式为:例例2:码头工人以每天码头工人以每天30吨的速度往一艘轮船装载货吨的速度往一艘轮船装载货物,把轮船装载完毕恰好用了物,把轮船装载完毕恰好用了8天时间天时间.(1)轮船到达目的地后开始卸货,卸货速度)轮船
10、到达目的地后开始卸货,卸货速度v(单位:(单位:吨天)与卸货时间吨天)与卸货时间t(单位:天)之间有怎样的关(单位:天)之间有怎样的关系?系?(2)由于遇到紧急情况,船上的货物必须在不超过)由于遇到紧急情况,船上的货物必须在不超过5日内卸完,那么平均每天至少要卸多少吨货物?日内卸完,那么平均每天至少要卸多少吨货物?分析:分析:(1)根据装货速度根据装货速度装货时间货物的总量,装货时间货物的总量,可以求出轮船装载货物的的总量;可以求出轮船装载货物的的总量;(2)再根据卸货速度货物总量)再根据卸货速度货物总量卸货时间,卸货时间,得到与的函数式。得到与的函数式。解:解:解:解:(1)设轮船上的货物总
11、量为设轮船上的货物总量为k吨,则根据已知条件有吨,则根据已知条件有 k=308=240所以所以v与与t的函数式为的函数式为(2)把)把t=5代代入入 ,得,得结果可以看出,如果全部货物恰好用结果可以看出,如果全部货物恰好用5天卸完,则天卸完,则平均每天卸载平均每天卸载48吨吨.若货物在不超过若货物在不超过5天内卸完天内卸完,则则平均每天至少要卸货平均每天至少要卸货48吨吨.例题例题 码头工人以每天码头工人以每天30吨的速度往一艘轮船上装载货物吨的速度往一艘轮船上装载货物,把把轮船装载完毕恰好用了轮船装载完毕恰好用了8天时间天时间.(1)轮船到达目的地后开始卸货轮船到达目的地后开始卸货,卸货速度
12、卸货速度v(单位单位:吨吨/天天)与卸货与卸货时间时间t(单位单位:天天)之间有怎样的函数关系之间有怎样的函数关系?(2)由于遇到紧急情况由于遇到紧急情况,船上的货物必须在不超过船上的货物必须在不超过5日内卸载完日内卸载完毕毕,那么平均每天至少要卸多少吨货物那么平均每天至少要卸多少吨货物?1.1.如如图图,某某玻玻璃璃器器皿皿制制造造公公司司要要制制造造一一种种容容积积为为1 1升升(1(1升升1 1立立方分米方分米)的圆锥形漏斗的圆锥形漏斗(1)(1)漏漏斗斗口口的的面面积积S S与与漏漏斗斗的的深深d d有怎样的函数关系有怎样的函数关系?(2)(2)如如果果漏漏斗斗口口的的面面积积为为10
13、0100厘厘米米2 2,则漏斗的深为多少,则漏斗的深为多少?2.一辆汽车往返于甲、乙两地之间,如果汽车一辆汽车往返于甲、乙两地之间,如果汽车以以50千米时的平均速度从甲地出发,则经过千米时的平均速度从甲地出发,则经过6小小时可达到乙地时可达到乙地.(1)甲、乙两地相距多少千米?)甲、乙两地相距多少千米?(2)如果汽车把速度提高到)如果汽车把速度提高到v(千米时),那么(千米时),那么从甲地到乙地所用时间从甲地到乙地所用时间t(小时)将怎样变化?(小时)将怎样变化?(3)写出)写出t与与v之间的函数关系式;之间的函数关系式;(4)因某种原因,这辆汽车需在)因某种原因,这辆汽车需在5小时内从乙地到
14、小时内从乙地到甲地,则此汽车的平均速度至少应是多少?甲地,则此汽车的平均速度至少应是多少?(5)已知汽车的平均速度最大可达)已知汽车的平均速度最大可达80千米时,千米时,那么它从甲地到乙地最快需要多长时间?那么它从甲地到乙地最快需要多长时间?1.某商场出售一批进价为某商场出售一批进价为2元的贺卡,在市场营元的贺卡,在市场营销中发现此商品的日销售单价销中发现此商品的日销售单价x元与日销售量元与日销售量y之间之间有如下关系:有如下关系:(1)根据表中的数据)根据表中的数据在平面直角坐标系中描出实数对(在平面直角坐标系中描出实数对(x,y)的对应点)的对应点.(2)猜测并确定)猜测并确定y与与x之间
15、的函数关系式,并画出图之间的函数关系式,并画出图象;象;(3)设经营此贺卡的销售利润为)设经营此贺卡的销售利润为w元,试求出元,试求出w与与x之间的函数关系式,若物价局规定此贺卡的销售价之间的函数关系式,若物价局规定此贺卡的销售价最高不能超过最高不能超过10元个,请你求出当日销售单价元个,请你求出当日销售单价x定定为多少元时,才能获得最大日销售利润?为多少元时,才能获得最大日销售利润?X(元)3456Y(个)2015 1210(4 4)试着在坐标轴上找)试着在坐标轴上找 点点D,D,使使AODBOCAODBOC。(1 1)分别写出这两个函数的表达式。)分别写出这两个函数的表达式。(2 2)你能求出点)你能求出点B B的坐标吗?的坐标吗?你是怎样求的?你是怎样求的?(3 3)若点)若点C C坐标是(坐标是(4 4,0 0).请求请求BOCBOC的面积。的面积。2 2.如图所示,正比例函数如图所示,正比例函数y=ky=k1 1x x的图象与的图象与反比例函数反比例函数y=y=的图象交于的图象交于A A、B B两点,其两点,其中点中点A A的坐标为(的坐标为(,2 2 )。)。33k2xCD(4,0)
限制150内