1.1直角三角形的性质和判定(I).ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《1.1直角三角形的性质和判定(I).ppt》由会员分享,可在线阅读,更多相关《1.1直角三角形的性质和判定(I).ppt(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、湘教版湘教版SHUXUE八年级下八年级下本课内容本节内容 1.1.11 1、三角形的内角和为、三角形的内角和为,特殊的三角形我们学,特殊的三角形我们学过有哪些?过有哪些?18002 2、两个角度数之和等于、两个角度数之和等于 ,称这两个角互为,称这两个角互为余角。试画图说明。余角。试画图说明。900DCBA3 3、有一个角是、有一个角是 的三角形叫直角三角形。的三角形叫直角三角形。直角直角9004、在在RtABC中中,CD是斜边上的高是斜边上的高,则图则图中有几个直角三角形?中有几个直角三角形?有有3 3个直角三角形:个直角三角形:RtABC,RtACD,RtCBD说一说说一说 1.如图,在如
2、图,在RtABC中,两锐角的和中,两锐角的和A+B=?A+B=90.A+B+C=180.C=90.直角三角形的两个锐角互余。直角三角形的两个锐角互余。有两个角互余的三角形是直角三角形有两个角互余的三角形是直角三角形.这个性质,反过来怎么叙述?这个性质,反过来怎么叙述?探究探究直角三角形的两个锐角互余。直角三角形的两个锐角互余。反过来:反过来:。有两个角互余的三角形是直角三角形有两个角互余的三角形是直角三角形.成立吗?成立吗?有两个角互余的三角形是直角三角形有两个角互余的三角形是直角三角形.直角三角形的判定定理:直角三角形的判定定理:证明:证明:ABC1800又又AB900 C900ABC是直角
3、三角形是直角三角形。已知如图,已知如图,AB900,试证明试证明ABC是直是直角三角形。角三角形。1、RtABC中,一个锐角中,一个锐角A500,则另一个锐则另一个锐角角B。2、ABC中中,C:B:A1:1:2,则它的三个则它的三个内角分别是内角分别是C ,B ,A ,它是一个它是一个 三角形三角形。3 3、等腰直角三角形的两个锐角分别是等腰直角三角形的两个锐角分别是 、;4、如果直角三角形有一个锐角为如果直角三角形有一个锐角为450,那么它一定那么它一定是是 直角三角形。直角三角形。450450900等腰直角等腰直角400等腰等腰做一做做一做450450 如图,画一个如图,画一个RtABC,
4、并作出斜边,并作出斜边AB上上的中线的中线CD,度量并比较,度量并比较CD,AB,AD,BD的长度的长度.你能发现什么结论?你能发现什么结论?CD=;AD=;BD=;AB=;CD=AB.DBDBADAD+DB探究探究我们来验证一下我们来验证一下.12是否任意一个是否任意一个Rt ABC都有都有CD=AB 成立呢?成立呢?12在在下下图中,过图中,过 RtABC 的直角顶点的直角顶点 C 作射线作射线 CD交交 AB 于于 D,使,使 1=A,则有,则有 .(等角对等边等角对等边)于是受到启发于是受到启发:又因为又因为 A+B=90,1+2=90,所以所以 B=2.如如上上图,如果中线图,如果中
5、线CD=AB,则有,则有ACD=A.12AD=CD于是得:于是得:BD=CD(等角对等边等角对等边).).故得故得 所以所以D是斜边是斜边AB的中点,即的中点,即CD就是斜边就是斜边AB的中线的中线,从而从而CD与与CD重合,重合,并且有并且有:在在直角三角形中,斜边上的中线等于斜边的一半直角三角形中,斜边上的中线等于斜边的一半.直角三角形的性质定理:直角三角形的性质定理:CD=AB12举举例例例例1 如果三角形一边上的中线等于这条边的一如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形半,求证:这个三角形是直角三角形。已知:如图,已知:如图,CD是是ABC的的AB边上的中线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1 直角三角形 性质 判定
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内