【教学课件】第四章统计判别.ppt
《【教学课件】第四章统计判别.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第四章统计判别.ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章 统计判别4.1 作为统计判别问题的模式分类模式识别的目的就是要确定某一个给定的模式样本属于哪一类。可以通过对被识别对象的多次观察和测量,构成特征向量,并将其作为某一个判决规则的输入,按此规则来对样本进行分类。4.1 作为统计判别问题的模式分类在获取模式的观测值时,有些事物具有确定的因果关系,即在一定的条件下,它必然会发生或必然不发生。例如识别一块模板是不是直角三角形,只要凭“三条直线边闭合连线和一个直角”这个特征,测量它是否有三条直线边的闭合连线并有一个直角,就完全可以确定它是不是直角三角形。这种现象是确定性的现象,前一章的模式判别就是基于这种现象进行的。但在现实世界中,由许多客观现象
2、的发生,就每一次观察和测量来说,即使在基本条件保持不变的情况下也具有不确定性。只有在大量重复的观察下,其结果才能呈现出某种规律性,即对它们观察到的特征具有统计特性。特征值不再是一个确定的向量,而是一个随机向量。此时,只能利用模式集的统计特性来分类,以使分类器发生错误的概率最小。4.1 作为统计判别问题的模式分类4.1.1 贝叶斯判别原则两类模式集的分类目的:要确定x是属于1类还是2类,要看x是来自于1类的概率大还是来自2类的概率大。贝叶斯判别4.1 作为统计判别问题的模式分类4.1.1 贝叶斯判别原则例子对一大批人进行癌症普查,患癌者以1类代表,正常人以2类代表。设被试验的人中患有癌症的概率为
3、0.005,即P(1)=0.005,当然P(2)=1-0.005=0.995现任意抽取一人,要判断他是否患有癌症。显然,因为P(2)P(1),只能说是正常的可能性大。如要进行判断,只能通过化验来实现。4.1 作为统计判别问题的模式分类4.1.1 贝叶斯判别原则例子设有一种诊断癌症的试验,其结果为“阳性”和“阴性”两种反应。若用这种试验来对一个病人进行诊断,提供的化验结果以模式x代表,这里x为一维特征,且只有x=“阳”和x=“阴”两种结果。4.1 作为统计判别问题的模式分类4.1.1 贝叶斯判别原则例子假设根据临床记录,发现这种方法有以下统计结果患有癌症的人试验反应为阳性的概率=0.95,即p(
4、x=阳|1)=0.95患有癌症的人试验反应为阴性的概率=0.05,即p(x=阴|1)=0.05正常人试验反应为阳性的概率=0.01,即p(x=阳|2)=0.01正常人试验反应为阴性的概率=0.99,即p(x=阴|2)=0.994.1 作为统计判别问题的模式分类4.1.1 贝叶斯判别原则问题若被化验的人具有阳性反应,他患癌症的概率为多少,即求P(1|x=阳)=?这里P(1)是根据以往的统计资料得到的,为患癌症的先验概率。现在经过化验,要求出P(1|x=阳),即经过化验后为阳性反应的人中患癌症的概率,称为后验概率。计算4.1 作为统计判别问题的模式分类4.1.2 贝叶斯最小风险判别当考虑到对于某一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学课件 教学 课件 第四 统计 判别
限制150内