《做判别分析》PPT课件.ppt
《《做判别分析》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《做判别分析》PPT课件.ppt(83页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第14章 聚类分析与判别分析介绍:介绍:1、聚类分析、聚类分析2、判别分析、判别分析分类学是人类认识世界的基础科学。聚类分析分类学是人类认识世界的基础科学。聚类分析和判别分析是研究事物分类的基本方法,广泛地应和判别分析是研究事物分类的基本方法,广泛地应用于自然科学、社会科学、工农业生产的各个领域。用于自然科学、社会科学、工农业生产的各个领域。14.1.1 聚类分析根据事物本身的特性研究个体分类的方法,原根据事物本身的特性研究个体分类的方法,原则是同一类中的个体有较大的相似性,不同类则是同一类中的个体有较大的相似性,不同类中的个体差异很大。中的个体差异很大。根据分类对象的不同,分为样品(观测量)
2、聚根据分类对象的不同,分为样品(观测量)聚类和变量聚类两种:类和变量聚类两种:n样品聚类:对观测量样品聚类:对观测量(Case)进行聚类(不同的目的进行聚类(不同的目的选用不同的指标作为分类的依据,如选拔运动员与选用不同的指标作为分类的依据,如选拔运动员与分课外活动小组)分课外活动小组)n变量聚类:找出彼此独立且有代表性的自变量,而变量聚类:找出彼此独立且有代表性的自变量,而又不丢失大部分信息。在生产活动中不乏有变量聚又不丢失大部分信息。在生产活动中不乏有变量聚类的实例,如:衣服号码(身长、胸围、裤长、腰类的实例,如:衣服号码(身长、胸围、裤长、腰围)、鞋的号码。变量聚类使批量生产成为可能。围
3、)、鞋的号码。变量聚类使批量生产成为可能。14.1.2 判别分析判别分析是根据表明事物特点的变量值和它们判别分析是根据表明事物特点的变量值和它们所属的类,求出判别函数。根据判别函数对未所属的类,求出判别函数。根据判别函数对未知所属类别的事物进行分类的一种分析方法。知所属类别的事物进行分类的一种分析方法。在自然科学和社会科学的各个领域经常遇到需在自然科学和社会科学的各个领域经常遇到需要对某个个体属于哪一类进行判断。如动物学要对某个个体属于哪一类进行判断。如动物学家对动物如何分类的研究和某个动物属于哪一家对动物如何分类的研究和某个动物属于哪一类、目、纲的判断。类、目、纲的判断。不同:判别分析和聚类
4、分析不同的在于判别分不同:判别分析和聚类分析不同的在于判别分析要求已知一系列反映事物特征的数值变量的析要求已知一系列反映事物特征的数值变量的值,并且已知各个体的分类(值,并且已知各个体的分类(训练样本训练样本)。)。14.1.3 聚类分析与判别分析的SPSS过程在在AnalyzeClassify下:下:1.K-MeansCluster:观测量快速聚类分观测量快速聚类分析过程析过程2.HierarchicalCluster:分层聚类(进行分层聚类(进行观测量聚类和变量聚类的过程观测量聚类和变量聚类的过程3.Discriminant:进行判别分析的过程进行判别分析的过程14.2 快速样本聚类过程(
5、Quick Cluster)使用使用k均值分类法对观测量进行聚类均值分类法对观测量进行聚类可使用系统的默认选项或自己设置选项,如分为几类、可使用系统的默认选项或自己设置选项,如分为几类、指定初始类中心、是否将聚类结果或中间数据数据存入指定初始类中心、是否将聚类结果或中间数据数据存入数据文件等。数据文件等。快速聚类实例快速聚类实例(P342,data14-01a):使用系统的默认使用系统的默认值进行:对运动员的分类(分为值进行:对运动员的分类(分为4类)类)nAnalyzeClassifyK-MeansClusterwVariables:x1,x2,x3wLabelCaseBy:nowNumbe
6、rofCluster:4w比较有用的结果:聚类结果形成的最后四类中心点比较有用的结果:聚类结果形成的最后四类中心点(FinalClusterCenters)和每类的观测量数目(和每类的观测量数目(NumberofCasesineachCluster)w但不知每个运动员究竟属于哪一类?这就要用到但不知每个运动员究竟属于哪一类?这就要用到Save选项选项14.2 快速样本聚类过程(Quick Cluster)中的选项使用快速聚类的选择项:使用快速聚类的选择项:w类中心数据的输入与输出:类中心数据的输入与输出:Centers选项选项w输出数据选择项:输出数据选择项:Save选项选项w聚类方法选择项:
7、聚类方法选择项:Method选项选项w聚类何时停止选择项:聚类何时停止选择项:Iterate选项选项w输出统计量选择项:输出统计量选择项:Option选项选项14.2 指定初始类中心的聚类方法例题P343数据同上(数据同上(data14-01a):以四个四类成绩突出者的数据为初始):以四个四类成绩突出者的数据为初始聚类中心聚类中心(种子种子)进行聚类。类中心数据文件进行聚类。类中心数据文件data14-01b(但缺一(但缺一列列Cluster_,不能直接使用,要修改),不能直接使用,要修改)。对运动员的分类(还是分。对运动员的分类(还是分为为4类)类)AnalyzeClassifyK-Mean
8、sClusternVariables:x1,x2,x3nLabelCaseBy:nonNumberofCluster:4nCenter:Readinitialfrom:data14-01bnSave:Clustermembership和和DistancefromClusterCentern比较有用的结果(可将结果与前面没有初始类中心比较):比较有用的结果(可将结果与前面没有初始类中心比较):w聚类结果形成的最后四类中心点聚类结果形成的最后四类中心点(FinalClusterCenters)w每类的观测量数目(每类的观测量数目(NumberofCasesineachCluster)w在数据文件中
9、的两个新变量在数据文件中的两个新变量qc1_1(每个观测量最终被分配(每个观测量最终被分配到哪一类)和到哪一类)和qc1_2(观测量与所属(观测量与所属类中心点的距离)类中心点的距离)14.3 分层聚类(Hierarchical Cluster)分层聚类方法:分层聚类方法:n分解法分解法:先视为一大类,再分成几类先视为一大类,再分成几类n凝聚法凝聚法:先视每个为一类先视每个为一类,再合并为几大类再合并为几大类可用于观测量可用于观测量(样本样本)聚类聚类(Q型型)和变量聚类和变量聚类(R型型)一般分为两步(自动一般分为两步(自动,可从可从Paste的语句知道的语句知道,P359):):nProx
10、imities:先对数据进行的预处理:先对数据进行的预处理(标准化和计算距离等标准化和计算距离等)nCluster:然后进行聚类分析:然后进行聚类分析两种统计图:树形图两种统计图:树形图(Dendrogram)和冰柱图和冰柱图(Icicle)各类型数据的标准化、距离和相似性计算各类型数据的标准化、距离和相似性计算P348-354n定距变量、分类变量、二值变量定距变量、分类变量、二值变量n标准化方法标准化方法p353:ZScores、Range-1to1、Range0to1等等14.3.4 用分层聚类法进行观测量聚类实例P358对对20种啤酒进行分类种啤酒进行分类(data14-02),变量包括
11、:变量包括:Beername(啤酒名称啤酒名称)、calorie(热量热量)、sodium(钠含量钠含量)、alcohol(酒精含量酒精含量)、cost(价格价格)AnalyzeClassifyHierarchicalCluster:nVariables:calorie,sodium,alcohol,cost成分和价格成分和价格nLabelCaseBy:BeernamenCluster:Case,Q聚类聚类nDisplay:选中选中Statistics,单击,单击StatisticswAgglomeration Schedule Agglomeration Schedule 凝聚状态表凝聚状态
12、表wProximity matrixProximity matrix:距离矩阵:距离矩阵wCluster membershipCluster membership:Single solutionSingle solution:4 4 显示分为显示分为4 4类时,各观测量类时,各观测量所属的类所属的类nMethod:Cluster(FurthestNeighbor),Measure-Interval(SquaredEuclideandistance),TransformValue(Range0-1/Byvariable(值值-最小值最小值)/极差极差)nPlots:(Dendrogram)Ici
13、cle(Specifiedrangeofcluster,Start-1,Stop-4,by-1),Orientation(Vertical纵向作图纵向作图)nSave:ClusterMembership(Singlesolution4)n比较有用的结果:根据需要进行分类,在数据文件中的分类新变量比较有用的结果:根据需要进行分类,在数据文件中的分类新变量clu4_1等等14.3.5 用分层聚类法进行变量聚类变量聚类,是一种降维的方法,用于在变量聚类,是一种降维的方法,用于在变量众多时寻找有代表性的变量,以便变量众多时寻找有代表性的变量,以便在用少量、有代表性的变量代替大变量在用少量、有代表性的变
14、量代替大变量集时,损失信息很少。集时,损失信息很少。与进行观测量聚类雷同,不同点在于:与进行观测量聚类雷同,不同点在于:w选择选择Variable而非而非CasewSave选项失效,不建立的新变量选项失效,不建立的新变量14.3.6 变量聚类实例1 P366上面啤酒分类问题上面啤酒分类问题data14-02。AnalyzeClassifyHierarchicalCluster:nVariables:calorie,sodium,alcohol,cost成分和价格成分和价格nCluster:Variable,R聚类聚类nMethod:wClusterMethod:FurthestNeighbor
15、wMeasure-Interval:PearsonCorrelationwTransformValues:ZScore(ByVariable)nPlots:Dendrogram树型图树型图nStatistics:Proximity matrixProximity matrix:相关矩阵:相关矩阵n比较有用的结果:根据相关矩阵和树型图,可知比较有用的结果:根据相关矩阵和树型图,可知calorie(热量热量)和和alcohol(酒酒精含量精含量)的相关系数最大,首先聚为一类。从整体上看,聚为三类是比较好的的相关系数最大,首先聚为一类。从整体上看,聚为三类是比较好的结果。至于热量和酒精含量选择哪个作
16、为典型指标代替原来的两个变量,可结果。至于热量和酒精含量选择哪个作为典型指标代替原来的两个变量,可以根据专业知识或测度的难易程度决定。以根据专业知识或测度的难易程度决定。14.3.6 变量聚类实例2 P368有有10个测试项目,分别用变量个测试项目,分别用变量X1-X10表示,表示,50名学生参加测试。想从名学生参加测试。想从10个变量中选择几个变量中选择几个典型指标。个典型指标。data14-03AnalyzeClassifyHierarchicalCluster:nVariables:X1-X10nCluster:Variable,R聚类聚类nMethod:wClusterMethod:F
17、urthestNeighborwMeasure-Interval:PearsonCorrelationnPlots:Dendrogram树型图树型图nStatistics:Proximity matrixProximity matrix相关矩阵相关矩阵n比较有用的结果:可以从树型图中看出聚类过程。具体聚为几类最为合理,比较有用的结果:可以从树型图中看出聚类过程。具体聚为几类最为合理,根据专业知识来定。而每类中的典型指标的选择,可用根据专业知识来定。而每类中的典型指标的选择,可用p370的相关指数公式的相关指数公式的计算,然后比较类中各个变量间的相关指数,哪个大,就选哪个变量作为的计算,然后比较
18、类中各个变量间的相关指数,哪个大,就选哪个变量作为此类的代表变量。此类的代表变量。14.4 判别分析P374判别分析的概念:是根据观测到的若干变量值,判断研判别分析的概念:是根据观测到的若干变量值,判断研究对象如何分类的方法。究对象如何分类的方法。要先建立判别函数要先建立判别函数Y=a1x1+a2x2+.anxn,其中,其中:Y为为判别分数判别分数(判别值判别值),x1x2.xn为反映研究对象特征的变为反映研究对象特征的变量,量,a1a2.an为系数为系数SPSS对于分为对于分为m类的研究对象,建立类的研究对象,建立m个线性判别函个线性判别函数。对于每个个体进行判别时,把观测量的各变量值代数。
19、对于每个个体进行判别时,把观测量的各变量值代入判别函数,得出判别分数,从而确定该个体属于哪一入判别函数,得出判别分数,从而确定该个体属于哪一类,或计算属于各类的概率,从而判别该个体属于哪一类,或计算属于各类的概率,从而判别该个体属于哪一类。还建立标准化和未标准化的典则判别函数。类。还建立标准化和未标准化的典则判别函数。具体见下面具体见下面吴喜之教授有关判别分析判别分析的讲义补充:补充:聚类分析与判别分析以下的讲义是吴喜之教授有关聚聚类类分分析析与与判判别别分分析析的讲义,我觉得比书上讲得清楚。先是聚类分析一章先是聚类分析一章再是判别分析一章再是判别分析一章聚类分析聚类分析分类分类俗语说,物以类
20、聚、人以群分。俗语说,物以类聚、人以群分。但什么是分类的根据呢?但什么是分类的根据呢?比如,要想把中国的县分成若干类,就有很比如,要想把中国的县分成若干类,就有很多种分类法;多种分类法;可以按照自然条件来分,可以按照自然条件来分,比如考虑降水、土地、日照、湿度等各方面;比如考虑降水、土地、日照、湿度等各方面;也可以考虑收入、教育水准、医疗条件、基也可以考虑收入、教育水准、医疗条件、基础设施等指标;础设施等指标;既可以用某一项来分类,也可以同时考虑多既可以用某一项来分类,也可以同时考虑多项指标来分类。项指标来分类。聚类分析聚类分析对对于于一一个个数数据据,人人们们既既可可以以对对变变量量(指指标
21、标)进进行行分分类类(相相当当于于对对数数据据中中的的列列分分类类),也也可可以以对对观观测测值值(事事件件,样样品品)来来分分类类(相相当当于于对对数数据据中的行分类)。中的行分类)。比比如如学学生生成成绩绩数数据据就就可可以以对对学学生生按按照照理理科科或或文文科成绩(或者综合考虑各科成绩)分类,科成绩(或者综合考虑各科成绩)分类,当当然然,并并不不一一定定事事先先假假定定有有多多少少类类,完完全全可可以以按照数据本身的规律来分类。按照数据本身的规律来分类。本本章章要要介介绍绍的的分分类类的的方方法法称称为为聚聚类类分分析析(clusteranalysis)。对对变变量量的的聚聚类类称称为
22、为R型型聚聚类类,而而对对观观测测值值聚聚类类称称为为Q型型聚聚类类。这这两两种聚类在数学上是对称的,没有什么不同。种聚类在数学上是对称的,没有什么不同。饮料数据(饮料数据(drink.sav)16种饮料的热量、咖啡因、钠及价格四种变量 如何度量远近如何度量远近?如果想要对100个学生进行分类,如果仅仅知道他们的数学成绩,则只好按照数学成绩来分类;这些成绩在直线上形成100个点。这样就可以把接近的点放到一类。如果还知道他们的物理成绩,这样数学和物理成绩就形成二维平面上的100个点,也可以按照距离远近来分类。三维或者更高维的情况也是类似;只不过三维以上的图形无法直观地画出来而已。在饮料数据中,每
23、种饮料都有四个变量值。这就是四维空间点的问题了。两个距离概念两个距离概念按按照照远远近近程程度度来来聚聚类类需需要要明明确确两两个个概概念念:一一个个是是点点和和点点之间之间的距离,一个是的距离,一个是类和类之间类和类之间的距离。的距离。点点间间距距离离有有很很多多定定义义方方式式。最最简简单单的的是是歐歐氏氏距距离离,还还有有其他的距离。其他的距离。当当然然还还有有一一些些和和距距离离相相反反但但起起同同样样作作用用的的概概念念,比比如如相相似性等,两点越相似度越大,就相当于距离越短。似性等,两点越相似度越大,就相当于距离越短。由由一一个个点点组组成成的的类类是是最最基基本本的的类类;如如果
24、果每每一一类类都都由由一一个个点点组组成成,那那么么点点间间的的距距离离就就是是类类间间距距离离。但但是是如如果果某某一一类包含不止一个点,那么就要确定类间距离,类包含不止一个点,那么就要确定类间距离,类类间间距距离离是是基基于于点点间间距距离离定定义义的的:比比如如两两类类之之间间最最近近点点之之间间的的距距离离可可以以作作为为这这两两类类之之间间的的距距离离,也也可可以以用用两两类类中中最最远远点点之之间间的的距距离离作作为为这这两两类类之之间间的的距距离离;当当然然也也可可以以用用各各类类的的中中心心之之间间的的距距离离来来作作为为类类间间距距离离。在在计计算算时时,各各种种点点间间距距
25、离离和和类类间间距距离离的的选选择择是是通通过过统统计计软软件件的的选选项项实现的。不同的选择的结果会不同,但一般不会差太多。实现的。不同的选择的结果会不同,但一般不会差太多。向量向量x=(x1,xp)与与y=(y1,yp)之间的距离或相似系数之间的距离或相似系数:欧氏距离欧氏距离:Euclidean平方欧氏距离平方欧氏距离:Squared Euclidean夹角余弦夹角余弦(相似系数相似系数1):cosinePearson correlation(相似系数相似系数2):Chebychev:Maxi|xi-yi|Block(绝对距离绝对距离):S Si|xi-yi|Minkowski:当变量的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 做判别分析 判别分析 PPT 课件
限制150内