人教A版高中数学必修空间中直线与直线之间的位置关系课件.ppt
《人教A版高中数学必修空间中直线与直线之间的位置关系课件.ppt》由会员分享,可在线阅读,更多相关《人教A版高中数学必修空间中直线与直线之间的位置关系课件.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学必修数学必修2ABCD复习与准备:平面内两条直线的位置关系复习与准备:平面内两条直线的位置关系相交直线相交直线平行直线平行直线相交直线相交直线(有一个公共点)(有一个公共点)平行直线平行直线(无公共点)(无公共点)两路相交两路相交立交桥立交桥立交桥中立交桥中,两条路线两条路线AB,CDaboab既不平行,又不相交既不平行,又不相交ABCD六角螺母六角螺母 两直线异面的判别二两直线异面的判别二:两条直线两条直线不同在任何一个平面内不同在任何一个平面内.1.异面直线的定义异面直线的定义:不同在不同在 任何任何 一个平面内的两条直线叫做异面直线。一个平面内的两条直线叫做异面直线。两直线异面的判别
2、一两直线异面的判别一:两条直线两条直线 既不相交、又不平行既不相交、又不平行.相交直线:相交直线:同一平面内,有且只有一个公共点;同一平面内,有且只有一个公共点;共面直线共面直线 平行直线:平行直线:同一平面内,没有公共点;同一平面内,没有公共点;异面直线:异面直线:不同在任何一个平面内,没有公共点。不同在任何一个平面内,没有公共点。空间中直线与直线之间的位置关系空间中直线与直线之间的位置关系 空间两条直线的位置关系有且只有三种:空间两条直线的位置关系有且只有三种:按平面基本性质分按平面基本性质分同在一个平面内同在一个平面内相交直线平行直线 不同在任何一个平面内不同在任何一个平面内:异面直线
3、有一个公共点有一个公共点:按公共点个数分按公共点个数分相交直线无无 公公 共共 点点平行直线异面直线空间中直线与直线之间的位置关系空间中直线与直线之间的位置关系 a与与b是是相交相交直线直线a与与b是是平行平行直线直线a与与b是是异面异面直线直线abM答:答:不一定不一定:它们可能异面,可能相交,也可能平行。:它们可能异面,可能相交,也可能平行。分别在两个平面内的两条直线是否一定异面?分别在两个平面内的两条直线是否一定异面?abab合作探究一合作探究一2.异面直线的画法异面直线的画法说明说明:画异面直线时画异面直线时,为了为了体现体现 它们不共面的特点。它们不共面的特点。常借常借 助一个或两个
4、平面来衬托助一个或两个平面来衬托.如图:aAbab(1)ba(3)(2)下图是一个正方体的展开图,如果将它还原下图是一个正方体的展开图,如果将它还原为正方体,那么为正方体,那么AB,CD,EF,GH这四条线段这四条线段所在的直线是异面直线的有所在的直线是异面直线的有 对。对。DBACEFHG3直线直线EF和直线和直线HG直线直线AB和直线和直线HG直线直线AB和直线和直线CD探探探探究究究究:我们知道我们知道,在同一平面内在同一平面内,如果两条直线都和第三条直线平行如果两条直线都和第三条直线平行,那么这两条直线互相平行那么这两条直线互相平行.在空间这一规律是否还成立呢在空间这一规律是否还成立呢
5、?公理:公理:平行于同一条直线的两条直线互相平行平行于同一条直线的两条直线互相平行平行线的传递性平行线的传递性推广推广:在空间平行于一条已知直线的所有直线都互相平行:在空间平行于一条已知直线的所有直线都互相平行3、平行公理的推导、平行公理的推导如图,长方体ABCD-ABCD中,BB/AA,DD/AA,那么BB与DD平行吗?例例1、已知已知空间四边形空间四边形ABCD中,中,E,F,G,H分别是分别是AB,BC,CD,DA的中点,求证四边形的中点,求证四边形EFGH是一个平行四边是一个平行四边形。形。解题思想:解题思想:把所要解的立体几何问题转化为平面几何的问题把所要解的立体几何问题转化为平面几
6、何的问题解立体几何时最主要、最常用的一种方法。解立体几何时最主要、最常用的一种方法。AB DEFGHC EH是是ABD的中位线的中位线 EH BD且且EH=BD同理,同理,FG BD且且FG=BDEH FG且且EH=FGEFGH是一个平行四边形是一个平行四边形证明:证明:连结连结BD 在例在例2 2中,如果再加上条件中,如果再加上条件AC=BD,那么四边,那么四边形形EFGH是什么图形?是什么图形?四边形四边形EFGH是菱形。是菱形。探探探探究究究究BCADEFHG在正方体在正方体ABCDA1B1C1D1中,直线中,直线 AB与与C1D1 ,AD1与与 BC1 1 是什么位置关系?为什么?是什
7、么位置关系?为什么?解解:C1ABCDA1B1D11)ABA1B1,C1D1 A1B1,AB C1D1 2)AB C1D1,且,且AB=C1D1 ABC1D1为平行四边形为平行四边形故故AD1 BC1 练习练习:在平面内在平面内,我们可以证明我们可以证明“如果一个角的两边与另一个角的如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补两边分别平行,那么这两个角相等或互补”空间中这一结空间中这一结论是否仍然成立呢?论是否仍然成立呢?定理(等角定理):定理(等角定理):空间中,如果两个角的两边分别对应平行,空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补那么这两个角相等或互
8、补观察观察:如图所示如图所示,长方体长方体ABCD-A1B1C1D1中中,ADC与与A1D1C1,ADC与与A1B1C1两边分别对应平行两边分别对应平行,这两组角的大小这两组角的大小 关系如何关系如何?答答:从图中可看出从图中可看出,ADC=A1D1C1,ADC+A1B1C1=180OD1C1B1A1CABD3.异面直线所成的角异面直线所成的角 在平面内在平面内,两条直线相交成四两条直线相交成四个角个角,其中不大于其中不大于90度的角称为它度的角称为它们的夹角们的夹角,用以刻画两直线的错开用以刻画两直线的错开程度程度,如图如图.在空间在空间,如图所示如图所示,正方体正方体ABCDEFGH中中,
9、异面直线异面直线AB与与HF的错开程度可以怎样来刻的错开程度可以怎样来刻画呢画呢?ABGFHEDCO(2)问题提出问题提出(1)复习回顾复习回顾如图所示,如图所示,a,b是两条是两条异面直线,异面直线,在空间中任选一点在空间中任选一点O,过过O点分别作点分别作 a,b的平行线的平行线 a和和 b,abPabO 则这两条线所成则这两条线所成的锐角的锐角(或直角),(或直角),称为称为异面直线异面直线a,b所成的角。所成的角。?Oa(3)解决问题解决问题思想方法思想方法:平移转化成相交直线所成的角平移转化成相交直线所成的角,即化空间图形问题为平面图形问题即化空间图形问题为平面图形问题思考思考:这个
10、角的大小与这个角的大小与O点的位置有关吗点的位置有关吗?即即O点位点位置不同时置不同时,这一角的大小是否改变这一角的大小是否改变?如果两条异面直线如果两条异面直线 a,b 所成的角为直所成的角为直角,我们就称这两角,我们就称这两条直线互相垂直条直线互相垂直,记为记为a b异面直线所成的角的范围异面直线所成的角的范围(0,90 oo思考思考:这个角的大小与这个角的大小与O点的位置有关吗点的位置有关吗?即即O点位置不同时点位置不同时,这一角的大小这一角的大小 是否改变是否改变?a a,a a a a(公理公理4),解答:解答:如图如图设设a 与与 b 相交所成的角为相交所成的角为 1,a 与与 b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 必修 空间 直线 之间 位置 关系 课件
限制150内