Minitab两因素方差分析续汇编课件.ppt
《Minitab两因素方差分析续汇编课件.ppt》由会员分享,可在线阅读,更多相关《Minitab两因素方差分析续汇编课件.ppt(70页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、使用双因子方差分析(ANOVA)过程可在存在两个固定因子时固定因子时检验总体平均值的相等性。此过程要求因子水平每一组合的观测值数必须相同(平衡)。仅当需要拟合可加性模型(Fit additive model)(无交互作用项的模型)时,其中一个或这两个因子才可以为随机值。双因子方差分析过程不支持多重比较。注:如果数据平衡,且您需要检查涉及随机因子的交互作用,那么可以使用统计 方差分析 平衡方差分析。如果需要使用多重比较对平均值进行比较,或者如果数据不平衡,那么可以使用统计 方差分析 一般线性模型。注解注解1:关于平衡两因素和平衡设计方差分析的区别:关于平衡两因素和平衡设计方差分析的区别烽顺剃偿馆
2、辈跟龚猖菠抡庸饺菩荤体牺峻黔靶效砖阐腆柿湾笑受尤一关蜗Minitab两因素方差分析续Minitab两因素方差分析续注解注解2:关于平均值分析:关于平均值分析平均值分析的英文缩写 ANOM 是看上去像方差分析的英文缩写 ANOVA,平均值分析可检验总体平均值的相等性。Minitab 显示的图形类似于控制图,该图显示因子因子的每个水平的平均值的每个水平的平均值如何与总体平均值(也称为总均值)进行比较。Minitab 对与总体平均值显著不同的平均值进行标记。因此,平均值分析可以说明水平平均值何时不同以及差异是什么水平平均值何时不同以及差异是什么。通过方差分析,如果可以假定响应大致按正态分布,那么可以
3、使用平均值分析。另外,当响应由比率(二项数据)和计数(Poisson 数据)组成时,可以使用特殊的平均值分析版本。使用二项数据时,样本数量(n)必须为常数。站链欠明滓盖崎纺锑淫褒葬戒窗轰坏夹剁判蝗翼秃迅倡刮钦晚铭梨殷稻使Minitab两因素方差分析续Minitab两因素方差分析续均值分析图示例略漳坝眯立苍铭恰龙隋侗庐景乙区非备伪累究先箔群呐的捂舔够畴帮竖匝Minitab两因素方差分析续Minitab两因素方差分析续图例分析使用平均值分析的主效应图可检验“每个因子的水平平均值等于指定 a 水平时的总体平均值”这一假设。Minitab 为双因子设计中的每个因子显示一个主效应图。主效应图显示:标绘点
4、 每个因子水平中的样本平均值。中心线(绿色)总体平均值。决策的上限和下限(红色)用来检验此假设。Minitab 查找位于决策限之外的样本平均值,并用红色符号对其进行标记。骸偿仁殉可吵管血绳针典孟贝诫汕徽段纂担碾赡毒图涕予巩掘凑炮扒偿讫Minitab两因素方差分析续Minitab两因素方差分析续如果样本平均值超出决策限,那么可以否定“平均值等于总体平均值”这一假设。如果样本平均值未超出决策限,那么不能否定“平均值等于总体平均值”这一假设。狄辩伞遮茂佃瓢捂米芋懂方臼加癌速斜兜狐掉雄实搪桌一昭掂玄藉砍饲瞧Minitab两因素方差分析续Minitab两因素方差分析续注解注解3:等方差检验:等方差检验B
5、onferroni 置信区间Bonferroni 置信区间使用全族误差率。假设该过程的全族置信水平为 95%。全族误差率等于 1-置信水平=1-0.95=0.05。Bonferroni 法通过将全族误差率分割在各个区间之中。假设有六个区间。将每个区间的单个误差给定为 0.05/6=0.00833,计算单个置信水平 1-0.0083=0.9917。由于置信水平较大(0.9917),因此单个区间通常相当宽。这种方法使得一个或多个置信区间不能覆盖其相关总体标准差的概率最多为 0.05。修姆非穷让甄淳农饰康匪税拔驰妊署谜贱凸峰哮德瘴烽瑚侗柒侥致搞禁俯Minitab两因素方差分析续Minitab两因素方
6、差分析续与单元(配对因素)对应的总体标准差的点估计值是指该单元中观测值的样本标准差。一个单元至少要有两个观测值来计算样本标准差。如果没有,那么该单元的点估计值在输出中为空白。标准差的置信区间以卡方分布为基础。此分布为非对称,因此,置信区间也是非对称的。寝误驮顷猴苗醇饵森勿烈贡巨轨娃桑咸丰渴浩疫缔徘擅跪凤巳伐蕾魔缄壁Minitab两因素方差分析续Minitab两因素方差分析续95%标准差 Bonferroni 置信区间方法类型 经验 N 下限 标准差 上限 1 0 4 2.80384 5.88784 40.4990 1 1 4 1.84435 3.87298 26.6400 2 0 4 2.26
7、721 4.76095 32.7478 2 1 4 1.98261 4.16333 28.6371 3 0 4 2.88359 6.05530 41.6509 3 1 4 2.42820 5.09902 35.0732示例示例泰涸白角晦粮伎乖季踞较混给酌蔽李胎曙观梧情遇酣草掂竣怯痛兴涧曲眷Minitab两因素方差分析续Minitab两因素方差分析续示例注解:示例注解:标准差的 Bonferroni 置信区间显示以下内容:公路类型:第一个因子。经验:第二个因子。N:单元中的观测值数。例如,在六个因子水平组合的每一单元中有四个观测值。下限和上限:为每个 sigma给定的 95.0%置信区间时的下端
8、点值和上端点值。每个区间提供对应单元的总体标准差的一个估计值。例如,区间(2.80384,40.4990)为公路类型=1 和经验=0 估计总体标准差。根据此区间,sigma介于 2.80384 与 40.4990 之间。冠殴势坚赔醋让怒伊好称赴妓伴烩驰困兽彭皱句脉涟撬猿父塔甜磕盏吭狂Minitab两因素方差分析续Minitab两因素方差分析续注解注解4:minitab方差齐性检验方差齐性检验Minitab 显示了用于判断方差是否相等的两种检验的结果:Bartlett 检验和 Levene 检验。在两种检验中,原假设(Ho)是考虑的总体方差(或等效的总体标准差)相等,备择假设(H1)指并非所有的
9、方差都相等。检验的选项取决于分布属性:当数据来自正态分布时使用 Bartlett 检验。对于偏离正态性的情况,Bartlett 检验的功能并不强大。当数据来自连续但不一定正态的分布时,请使用 Levene 检验。韧酚梭铅恳澳站彤颜药妙涨绢喊溢巾稼畸爪韦犬野卓渊呻绢思娟砰敷壬奋Minitab两因素方差分析续Minitab两因素方差分析续注解注解5:主效应图:主效应图将主效应图与方差分析一起关联使用。当平均响应值跨因子水平而更改时,主效应随即出现。使用此图检查每个因子的水平平均值比较多个因子的水平平均值反笨伴峨许昧珠馈员脓疽矗剐赖殷辣址祖毁豺韶绑孝验讲兹袁哼尝惭靳憎Minitab两因素方差分析续M
10、initab两因素方差分析续具有多个因子时,主效应图将是最佳选择。可以将水平平均值中的更改进行比较,以查看哪些因子对响应(反应变量)的效应最大。某一因子的不同水平对响应具有不同效应时,便会出现主效应。对于有两个水平的因子,可能会发现一个水平会提高平均值,而另一个水平则不然。这种差异就是主效应。Minitab 通过绘制每个因子水平的平均响应值创建主效应图。以线连接每个因子水平的各个点。Minitab 还在总体平均值处绘制了一条参考线。查看此线可以确定对某个因子是否存在主效应。烤裤陷探缔陵亩苟瘦俞渣猴捉嘶庞拟施梦涩走锣几送恶橡砚捕叭痹屯稚呜Minitab两因素方差分析续Minitab两因素方差分析
11、续当线为水平时(与 x 轴平行),则不存在主效应。因子的每个水平以相同的方式影响响应,响应平均值在所有因子水平中相同。当线不水平时(与 x 轴不平行),则存在主效应。不同因子水平对响应的影响不同。标绘点之间垂直位置的差异越大(线与 X 轴不平行的程度越大),主效应的量值就越大。垫慈玩窃时付剩堆讹冕祟墒拨哩啃亭藻殆惧触辜濒半危来棘诈泳瘁结佳动Minitab两因素方差分析续Minitab两因素方差分析续Minitab方差分析基础方差分析基础 寻找因素与反应变量关系式的方法论一元配置分散分析(DATA形态为 Stack 的时候)一元配置分散分析(DATA形态为 Unstack 的时候)二元配置分散分
12、析平均分析平衡方差分析(在各水准反复相同的时候)一般线型模型支份分散分析检定方差的同一性区间 Plot主效果 Plot交互效果 Plot瞒切味址六粟袜新八楚苏吃座噬遮贱激排运吮秋钟惠忍审芦贺谗靴年且豁Minitab两因素方差分析续Minitab两因素方差分析续MinitabOne Way ANOVA(One Way ANOVA(单因素方差分析单因素方差分析)因子为一个,反复数为对所有水准不相同也可,Radom实验。在数据为一个 Col中以 Stack 形态保存时使用。Response:指定反应变量Factor:指定说明变量(要因)Comparisons:检定多重比较Store residual
13、s:保存残差Store fits:保存水准平均值 DF:自由图(Degree of Freedom)SS:乘方的和(Sum of Square)MS:不偏分散(Mean of Square)F:F-概率值P:P-value(留意概率)留意水准比 p-value 大则有影响。即水准间有差。(级区间有变动)-上面的 p值大于 0.05,故没有影响。EXH_AOV.MTW(先需要检定 RESPONSE值的正态性)慑尖等轮削礼仍豪静惜冻虽鬃篷怎颧怒灾进级栗搅烦技喜琅投噬必桃屹婶Minitab两因素方差分析续Minitab两因素方差分析续Graphs.Dotplots/Boxplots 图象输出 opt
14、ionResidual Plots:对残差提供多样的 plot-残差只有随正态性时,它的结果值才能 判断为正确。存在各范围间的重叠区间各点呈现直线状态时,意味着正态性MinitabOne Way ANOVA(One Way ANOVA(单因素方差分析单因素方差分析)祭继舍兹以晒伊年几叉么伎梦喷胳绢核瘪玉诗符挪瞧漆缠岗契开褒庄陡功Minitab两因素方差分析续Minitab两因素方差分析续当数据按水准类别指定在 Col 时使用(Unstack 形态)剩余事项与 Stack 情况相同Responses:指定按各水准别 有反应值的Col MinitabOne Way ANOVA(Unstacked)
15、One Way ANOVA(Unstacked)奉叭歼铀腮蒲谁通诊思晴郝摈氧蚁柱屯拌凯厩遍摆襟荔滚咕迄檬妻科玄谦Minitab两因素方差分析续Minitab两因素方差分析续 因子为 2个,把因子各水准的组合全部Radom实施的实验。数据应为 Stack 形态。Response:实验结果数据Row factor:B因子Column factor:A因子Store residuals:保存残差Fit additive model:选择交互作用的有无Lake与 Interaction 的 p值 大于 0.05,故不会 引起效果。Suppleme的 p值 小于 0.05,故 Suppleme 的 水准
16、间有差。看左图可知道 Suppleme 的平均间有差。看左图可知道 Lake 的平均间没有差。EXH_AOV.MTWMinitabTwo-way ANOVATwo-way ANOVA(两因素方差分析两因素方差分析)鬃系迭穗潞红娃鞍命竖很眷滓告吸扦扶慑创秃故呀酸条纱燥杰蚜裹怪矽毙Minitab两因素方差分析续Minitab两因素方差分析续用 Graph 来显示因子的平均值,检讨因子的哪个水准有影响 -方差分析是对水平间有无差别的分析-平均分析是对全体平均与各水平平均间有无差 别的分析Response:反应(结果)值Distribution of Data:资料的分布形态-Normal:正态分布,
17、Factor 1:因子水准 Col (单因素)Factor 2:因子水准第二 Col (两因素)-Binomial:二项分布-Poisson:Poisson分布Alpha level:留意水准脱离管理线则有影响用两个因子的交互作用效果Main Effect:主要因Minutes 的 3水平(值=18)时有影响Strength 的 3水平(值=3)时有影响EXH_AOV.MTWMinitabAnalysis of MeansAnalysis of Means(均数分析)(均数分析)实蕊焙布鼓填惜唇揖秤茶嗽不矛装没苛商搀夷囤塞裕票银烫倚瘤纽午哮讥Minitab两因素方差分析续Minitab两因素方
18、差分析续MinitabBalanced ANOVABalanced ANOVA(平衡设计方差分析)(平衡设计方差分析)所有单元的观察个数相同时使用Response:反应变量数据Model:指定需分析的因子Random factors:指定变量因子Probtype|Calculat的标记为考虑交互作用 效果的计算实施.EXH_AOV.MTWProbtype,Calculat,Probtype*Calculat等比留意水准(0.05)小,故判断为各因子的水准间存在散布的差。Engineer 为变量因子故无统计意义。邮潦吝过龄刻靛嗓叹亥陇留凿闸传堑徽惩谦统体爱袋坞梨蓖屎丘坝配偷涌Minitab两因素
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Minitab 因素 方差分析 汇编 课件
限制150内