(精品)1.2.2基本初等函数的导数公式及导数的运算法则 (2).ppt
《(精品)1.2.2基本初等函数的导数公式及导数的运算法则 (2).ppt》由会员分享,可在线阅读,更多相关《(精品)1.2.2基本初等函数的导数公式及导数的运算法则 (2).ppt(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、(1.2.2)基本初等函数的导数公式 及导数的运算法则我们今后可以直接使用的基本初等函数的导数公式导数的运算法则:法则法则1:两个函数的和两个函数的和(差差)的导数的导数,等于这两个函数等于这两个函数的导数的和的导数的和(差差),即即:法则法则2:两个函数的积的导数两个函数的积的导数,等于第一个函数的导数等于第一个函数的导数乘第二个函数乘第二个函数,加上第一个函数乘第二个函数的导数加上第一个函数乘第二个函数的导数,即即:法则法则3:两个函数的商的导数两个函数的商的导数,等于第一个函数的导数等于第一个函数的导数乘第二个函数乘第二个函数,减去第一个函数乘第二个函数的导数减去第一个函数乘第二个函数的
2、导数,再除以第二个函数的平方再除以第二个函数的平方.即即:例例2.求函数求函数y=x3-2x+3的导数的导数.例例5.某运动物体自始点起经过某运动物体自始点起经过t秒后的距离秒后的距离s满足满足s=-4t3+16t2.(1)此物体什么时刻在始点此物体什么时刻在始点?(2)什么时刻它的速度为零什么时刻它的速度为零?解解:(1)令令s=0,即即1/4t4-4t3+16t2=0,所以所以t2(t-8)2=0,解解得得:t1=0,t2=8.故在故在t=0或或t=8秒末的时刻运动物体在秒末的时刻运动物体在 始点始点.(2)即即t3-12t2+32t=0,解得解得:t1=0,t2=4,t3=8,故在故在t=0,t=4和和t=8秒时物体运动的速度为零秒时物体运动的速度为零.练习练习:已知曲线已知曲线 在点在点P(1,1)处的切线与直线处的切线与直线m平平行且距离等于行且距离等于 ,求直线求直线m的方程的方程.设直线设直线m的方程为的方程为3x+y+b=0,由平行线间的距离公由平行线间的距离公式得式得:故所求的直线故所求的直线m的方程为的方程为3x+y+6=0或或3x+y-14=0.练习练习:已知曲线已知曲线 在点在点P(1,1)处的切线与直线处的切线与直线m平平行且距离等于行且距离等于 ,求直线求直线m的方程的方程.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品1.2.2基本初等函数的导数公式及导数的运算法则 2 精品 1.2 基本 初等 函数 导数 公式 运算 法则
限制150内