初中数学最值问题集锦+几何的定值与最值.doc
《初中数学最值问题集锦+几何的定值与最值.doc》由会员分享,可在线阅读,更多相关《初中数学最值问题集锦+几何的定值与最值.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学最值问题集锦+几何的定值与最值几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1特殊位置与极端位置法;2几何定理(公理)法;3数形结合法等注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点这是由于这类问题具有很强的探索性(目标不明确),
2、解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法【例题就解】【例1】 如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边APC和等边BPD,则CD长度的最小值为 思路点拨 如图,作CCAB于C,DDAB于D,DQCC,CD2=DQ2+CQ2,DQ=AB一常数,当CQ越小,CD越小,本例也可设AP=,则PB=,从代数角度探求CD的最小值 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等 【例2】 如图,圆的半径等于正三角形ABC的高
3、,此圆在沿底边AB滚动,切点为T,圆交AC、BC于M、N,则对于所有可能的圆的位置而言, MTN为的度数( ) A从30到60变动 B从60到90变动C保持30不变 D保持60不变 思路点拨 先考虑当圆心在正三角形的顶点C时,其弧的度数,再证明一般情形,从而作出判断注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值【例3】 如图,已知平行四边形ABCD,AB=,BC=(),P为AB边上的一动点,直线DP交CB的延长线于Q,求AP+BQ的最小值思路点拨 设AP=,把AP、BQ分
4、别用的代数式表示,运用不等式 (当且仅当时取等号)来求最小值 【例4】 如图,已知等边ABC内接于圆,在劣弧AB上取异于A、B的点M,设直线AC与BM相交于K,直线CB与AM相交于点N,证明:线段AK和BN的乘积与M点的选择无关思路点拨 即要证AKBN是一个定值,在图形中ABC的边长是一个定值,说明AKBN与AB有关,从图知AB为ABM与ANB的公共边,作一个大胆的猜想,AKBN=AB2,从而我们的证明目标更加明确注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题【例5】 已知XYZ是直角边长为1的等腰直角三角形(Z=90),它的三个顶点分别在等腰RtABC(C=90)的
5、三边上,求ABC直角边长的最大可能值思路点拨 顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=,CZ=,建立,的关系式,运用代数的方法求直角边的最大值 注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值学力训练1如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 问题 集锦 几何
限制150内