湖南省邵阳市2023届高三上学期第一次联考(一模)数学试题含答案.pdf
《湖南省邵阳市2023届高三上学期第一次联考(一模)数学试题含答案.pdf》由会员分享,可在线阅读,更多相关《湖南省邵阳市2023届高三上学期第一次联考(一模)数学试题含答案.pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023 年邵阳市高三第一次联考试题卷(数学)第 1 页(共 4 页)2023 年邵阳市高三第一次联考试题卷数学本试卷共 4 页,22 个小题。满分 150 分。考试用时 120 分钟。注意事项:1.答卷前,考生务必将自己的姓名、考生号填写在答题卡上。将条形码横贴在答题卡上“条形码粘贴区”。2.作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改
2、液。不按以上要求作答无效。4.保持答题卡的整洁。考试结束后,只交答题卡,试题卷自行保存。一、选择题(本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集 U=R,集合 A=x|x2+2x-3b,若函数 f x()=min ex-1-x,-x2+2mx-1 有且只有三个零点,则实数 m 的取值范围为()A.12,+()B.34,+()C.1,+()D.54,+()2023 年邵阳市高三第一次联考试题卷(数学)第 2 页(共 4 页)8.截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图所示
3、,将棱长为 3a 的正四面体沿棱的三等分点作平行于底面的截面,得到所有棱长均为 a 的截角四面体,则下列说法错误的是()A.二面角 A-BC-D 的余弦值为-13B.该截角四面体的体积为23 212a3C.该截角四面体的外接球表面积为112a2D.该截角四面体的表面积为 6 3a2二、多选题(本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分)9.随着时代与科技的发展,信号处理以各种方式被广泛应用于医学、声学、密码学、计算机科学、量子力 学 等 各 个 领 域.而 信 号 处 理 背 后 的
4、“功 臣”就 是 正 弦 型 函 数,f(x)=4i=1sin(2i-1)x2i-1的图象就可以近似的模拟某种信号的波形,则下列说法正确的有()A.函数 f x()的图象关于直线 x=2对称B.函数 f x()的图象关于点 0,0()对称C.函数 f x()为周期函数,且最小正周期为 D.函数 f x()的导函数 f x()的最大值为 410.已知 f x(),g x()都是定义在 R 上的函数,对任意 x,y 满足 f x-y()=f x()g y()-g x()f y(),且 f-2()=f 1()0,则下列说法正确的有()A.g 0()=1B.函数 f 2x-1()的图象关于点12,0(
5、)对称C.g 1()+g-1()=1D.若 f 1()=32,则2023n=1f(n)=3211.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上任意两条互相垂直的切线的交点,必在一个与椭圆同心的圆上.称此圆为该椭圆的“蒙日圆”,该圆由法国数学家加斯帕尔蒙日(1746-1818)最先发现.已知长方形 R 的四条边均与椭圆 C:x26+y23=1相切,则下列说法正确的有()A.椭圆 C 的离心率为 e=22B.椭圆 C 的蒙日圆方程为 x2+y2=6C.椭圆 C 的蒙日圆方程为 x2+y2=9D.长方形 R 的面积的最大值为 18.2023 年邵阳市高三第一次联考试题卷(数学)第 3
6、 页(共 4 页)12.已知函数 f x()=ex-x,g x()=x-ln x,则下列说法正确的有()A.g ex()在 0,+()上是增函数B.x1,不等式 f ax()f ln x2()恒成立,则正实数 a 的最小值为2eC.若 f x()=t 有两个零点 x1,x2,则 x1+x20D.若 f x1()=g x2()=t t2(),且 x2x10,则ln tx2-x1的最大值为1e三、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13.x-2y()3y-2z()5z-2x()7 的展开式中不含 z 的各项系数之和 .14.将函数 f x()=sin(x+)0,0)的焦点为
7、F,且 F 与圆 M:x2+(y+3)2=1上点的距离的最大值为 5.(1)求抛物线 C 的方程;(2)若点 P 在圆 M 上,PA,PB 是抛物线 C 的两条切线,A,B 是切点,求PAB 面积的最大值.22.(本小题满分 12 分)设函数 f(x)=(a-a2)x+ln x-1x(aR).(1)讨论函数 f(x)的单调性;(2)当 a=1 时,记 g(x)=xf(x)+x2+1,是否存在整数 t,使得关于 x 的不等式 tg(x)有解?若存在,请求出 t 的最小值;若不存在,请说明理由.2023 年邵阳市高三第一次联考参考答案与评分标准(数学)第 1 页(共 14 页)2023 年邵阳市高
8、三第一次联考参考答案与评分标准数学一、单选题(本大题共 8 小题,每小题 5 分,共 40 分)1.B2.A【详解】因为(2z+3)i=3z,2zi+3i=3z,3-2i()z=3i,所以 z=3i3-2i=3i(3+2i)(3-2i)(3+2i)=-6+9i13=-613+913i,z-=-613-913i,故选:A.3.A【详解】母线长为 1,设底面圆半径为 r,则 2r=,r=12,故圆锥的全面积为 S=S底+S侧=4+2=34,故选:A.4.D【详解】因为|a+b|2=a2+2ab+b2,|a-b|2=a2-2ab+b2,以上两式相减可得,4ab=|a+b|2-|a-b|2,所以|a+
9、b|2=|a-b|2+4ab=16+4=20,即|a+b|=2 5,故选:D.5.A【详解】从这种铅笔中任取一件抽到甲的概率为 0.6,抽到乙的概率是 0.4,抽到甲车间正品的概率 P1=0.6 (1-0.1)=0.54,抽到乙车间次品的概率 P2=0.4 (1-0.05)=0.38,任取一件抽到正品的概率 P=P1+P2=0.54+0.38=0.92.故选:A.6.A7.C【详解】令 g x()=ex-1-x,则 g x()=ex-1-1,令 g x()0,得 x 1;令 g x()0,得 x 0,在-,1()总存在 x=-M,使得 g-M()=e-M-1+M M,在 1,+()上由于 y=
10、ex-1的增长速率比 y=x 的增长速率要快得多,所以总存在 x=x0,使得 ex0-1-x0 M,所以 g x()在-,1()与 1,+()上都趋于无穷大;2023 年邵阳市高三第一次联考参考答案与评分标准(数学)第 2 页(共 14 页)令 h x()=-x2+2mx-1,则 h x()开口向下,对称轴为 x=m,所以 h x()在-,m()上单调递增,在 m,+()上单调递增,故 hx()max=h m()=m2-1,因为函数 f x()=min ex-1-x,-x2+2mx-1有且只有三个零点,而 g x()已经有唯一零点 x=1,所以 h x()必须有两个零点,则 hx()max0,
11、即 m2-1 0,解得 m 1,当 m -1 时,h 1()=-12+2m 1-1=-2+2m 0,则 f1()=min g 1(),h 1()=h 1()1 时,h 1()=-12+2m 1-1=-2+2m 0,则 f 1()=min g 1(),h 1()=g 1()=0,所以 f x()在x=1处取得零点,结合图像又知 g x()与 h x()必有两个交点,故 f x()在-,1()与 m,+()必有两个零点,所以 f x()有且只有三个零点,满足题意;综上:m 1,即 m 1,+().故选:C.8.D【详解】如下图所示:取 BC 的中点为 W,分别连接 SW 和 OW,因为 SWBC,
12、OWBC,所 以 SWO 为 S-BC-A 的 二 面 角,SW=a2-12a()2=32a,AW=a2-12a()2=32a,所以 AO=23AW=33a,所以SO=a2-33a()2=63a,在直角三角形 SOW 中,OW=SW()2-SO()2=36a,所以 cosSWO=OWSW=13所以二面角 S-BC-A 的余弦值为13,所以二面角 A-BC-D 的余弦值为-13,故 A 正确因为棱长为 a 的正四面体的高 h=63a,所以 V=13343a()263 3a()-41334a263a=23 212a3,故 B 正确;设外接球的球心为 O,ABC 的中心为 O,NPQ 的中心为 O,
13、2023 年邵阳市高三第一次联考参考答案与评分标准(数学)第 3 页(共 14 页)因为截角四面体上下底面距离为 6 a-63a=2 63a,所以R2-OC2+R2-OH2=2 63a,所以R2-a23+R2-a2=2 63a,所以R2-a23=2 63a-R2-a2,所以 R2-a23=83a2+R2-a2-4 63aR2-a2,所以 R2=118a2,所以 S=4R2=112a2,故 C 正确;由正四面体 S-NPQ 中,题中截角四面体由 4 个边长为 a 的正三角形,4 个边长为 a 的正六边形构成,故 S=4 34a2+4 6 34a2=7 3a2,故 D 错误.故选:D.二、多选题(
14、本大题共 4 小题,每小题 5 分,共 20 分)9.ABD【详解】因为函数 f(x)=4i=1sin(2i-1)x2i-1=sin x+sin3x3+sin5x5+sin7x7,定义域为 R,对于 A,f(+x)=sin +x()+sin 3+3x()3+sin 5+5x()5+sin 7+7x()7=-sinx-sin3x3-sin5x5-sin7x7=sin-x()+sin-3x()3+sin-5x()5+sin-7x()7=f-x(),所以函数 f x()的图象关于直线 x=2对称,故 A 正确;对于 B,f(-x)=sin-x()+sin-3x()3+sin-5x()5+sin-7x
15、()7=-sinx-sin3x3-sin5x5-sin7x7=-f x(),所以函数 f x()为奇函数,图象关于点 0,0()对称,故 B 正确;对于 C,由题知 f x+()=-f x()f x(),故 C 错误;对于 D,由题可知 f x()=cos x+cos 3x+cos 5x+cos 7x4,故 D 正确.故选:ABD.10.ABD【详解】对于 A,令 x=y=0,代入已知等式得 f 0()=f 0()g 0()-g 0()f 0()=0,得 f 0()=0,再令 y=0,x=1,代入已知等式得 f 1()=f 1()g 0()-g 1()f 0(),可得 f 1()1-g 0()
16、=-g 1()f 0()=0,结合 f 1()0 得 1-g 0()=0,g 0()=1,故 A正确;对于 B,再令 x=0,代入已知等式得 f-y()=f 0()g y()-g 0()f y(),2023 年邵阳市高三第一次联考参考答案与评分标准(数学)第 4 页(共 14 页)将 f 0()=0,g 0()=1 代入上式,得 f-y()=-f y(),函数 f x()为奇函数,函数 f 2x-1()关于点12,0()对称,故 B 正确;对于 C,再令 x=1,y=-1,代入已知等式,得 f 2()=f 1()g-1()-g 1()f-1(),f-1()=-f 1(),f 2()=f 1()
17、g-1()+g 1(),又 f 2()=-f-2()=-f 1(),-f 1()=f 1()g-1()+g 1(),f 1()0,g 1()+g-1()=-1,故 C 错误;对于 D,分别令 y=-1 和 y=1,代入已知等式,得以下两个等式:f x+1()=f x()g-1()-g x()f-1(),f x-1()=f x()g 1()-g x()f 1(),两式相加易得 f x+1()+f x-1()=-f x(),所以有 f x+2()+f x()=-f x+1(),即:f x()=-f x+1()-f x+2(),有:-f x()+f x()=f x+1()+f x-1()-f x+1
18、()-f x+2()=0,即:f x-1()=f x+2(),f x()为周期函数,且周期为 3,f 1()=32,f-2()=32,f 2()=-f-2()=-32,f 3()=f 0()=0,f 1()+f 2()+f 3()=0,2023n=1f n()=f 1()+f 2()+f 3()+f 2023()=f 2023()=f 1()=32,故 D 正确.故选:ABD.11.ACD【详解】椭圆 C 的离心率为 e=ca=6-36=22设两条互相垂直的切线的交点为 P x0,y0(),当题设中的两条互相垂直的切线中有斜率不存在或斜率为 0 时,可得点 P 的坐标是(a,b),或(a,-b
19、).当题设中的两条互相垂直的切线中的斜率均存在且均不为 0 时,可设点 P 的坐标是(x0,y0)(x0 a,且 y0 b),所以可设曲线 C 的过点 P 的切线方程是 y-y0=k(x-x0)(k0).由x2a2+y2b2=1y-y0=k(x-x0),得(a2k2+b2)x2-2ka2(kx0-y0)x+a2(kx0-y0)2-a2b2=0,由其判别式的值为 0,得(x02-a2)k2-2x0y0k+y02-b2=0(x02-a20),因为 kPA,kPB(kPA,kPB为过 P 点互相垂直的两条直线的斜率)是这个关于 k 的一元二次方程的两个根,所以 kPAkPB=y02-b2x02-a2
20、,由此,得 kPAkPB=-1x02+y02=a2+b2,即 C 的蒙日圆方程为:x2+y2=9;2023 年邵阳市高三第一次联考参考答案与评分标准(数学)第 5 页(共 14 页)因为蒙日圆为长方形的外接圆,设 r=OA=3,AOB=,则矩形面积公式为 S=412r2sin =18sin,显然 sin =1,即矩形四条边都相等,为正方形时,Smax=18.故答案为:ACD.12.ABD【详解】对于 A,当 x 0 时,ex1,令 t=ex,则 t 1,g t()=t-ln t,g t()=1-1t=t-1t,当 t 1 时,g t()0 恒成立,g t()在 1,+()上单调递增;t=ex在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省 邵阳市 2023 届高三 上学 第一次 联考 数学试题 答案
限制150内